Molecular dynamics simulation of displacement cascades in B2 NiAl

N. Trung, H. Phuong, M.D. Starostenkov show affiliations and emails
Received 10 December 2018; Accepted 17 February 2019;
Citation: N. Trung, H. Phuong, M.D. Starostenkov. Molecular dynamics simulation of displacement cascades in B2 NiAl. Lett. Mater., 2019, 9(2) 168-172
BibTex   https://doi.org/10.22226/2410-3535-2019-2-168-172

Abstract

Frenkel pair time evolution in the displacement cascade with PKA energy equals  40 keV. 
(A video of visualizing Frenkel pairs during the displacement cascade is available on Youtube https://www.youtube.com/watch?v=sQ6rgZj9JF0 )This study is focused on the behavior of B2 NiAl alloy under irradiation. For achieving this aim, we performed a series of molecular dynamics simulations of displacement cascades with the primary knock-on atom (PKA) energy from 1 keV to 40 keV. To ensure that the boundary effects were not important, the simulation boxes contained from 60 × 60 × 60 to 112 ×112 ×112 unit cells with 432 000 to 2 809 856 atoms, depending on the PKA energy. To correctly reproduce atomic interactions at short distances, the Mishin EAM potentials were stiffened in a short range using polynomial regression to join the equilibrium part of the EAM potential to a short range of ZBL potential and intermediate interatomic distance with the corresponding pairwise energy based on the density function theory calculation. To obtain statistically meaningful results, 10 simulations were performed for each PKA energy. Each cascade simulation lasted approximately from 12 ps to 42 ps, depending on the PKA energy; in these time intervals the number of Frenkel pairs (FP) became stable. We discuss in detail the time evolution of Frenkel pairs, the avalanche effect in the sonic phase and the origin of the permanent defect. The results from our simulations, including the number of stable Frenkel pairs, chemical composition, clustering of the defect production are in good agreement with the reports from the literature.

References (39)

1. P. Yvon, F. J. Carré. Nucl. Mater. 385, 217 (2009). Crossref
2. T. Allen, J. Busby, M. Meyer. Mater. Today. 13, 14 (2010). Crossref
3. Development of Radiation Resistant Reactor Core Structural Materials, IAEA. https://www-legacy.iaea.org/About/Policy/GC/GC51/GC51InfDocuments/English/gc51inf-3-att7_en.pdf.
4. P. Guo, J. M. Xue et al. Acta Metall. Sin. (Engl. Lett.). 28, 903 (2015). Crossref
5. W. Zhang et al. AIP Advances. 4, 057110 (2014). Crossref
6. A. Y. Lozovoi, Y. Mishin. Phys. Rev. B. 68, 184113 (2003). Crossref
7. R. Darolia, W. S. Walston, M. V. Nathal. Nasa Lewis Research Center. 561 (1996). Crossref
8. H. Zhu et al. Philosophical Magazine A. 71(4), 735 (1995). Crossref
9. N. V. Doan, R. Vascon. Radiation Effects and Defects in Solids. 141(1 - 4), 363 (1997). Crossref
10. N. V. Doan, H. Tietze. Nuclear Instruments and Methods in Physics. 102(1 - 4), 58 (1995). Crossref
11. J. F. Ziegler, J. P. Biersack and U. Littmark. The Stopping and Range of Ions in Matter. In: Bromley D.A. (eds) Treatise on Heavy-Ion Science. Springer, Boston, MA (1985). Crossref
12. L. K. Béland et al. J. Appl. Phys. 119, 085901 (2016). Crossref
13. C. S. Becquart et al. Phys. Rev. B. 66, 134104 (2002). Crossref
14. C. Becquart et al. J. Nucl. Mater. 280, 73 (2000). Crossref
15. D. Terentyev et al. J. Nucl. Mater. 351, 65 (2006). Crossref
16. C. Bjorkas and K. Nordlund. Nucl. Instrum. Methods Phys. Res. Sect. B. 259, 853 (2007). Crossref
17. G. P. P. Pun and Y. Mishin. Phil. Mag. 89, 3245 (2009). Crossref
18. R. E. Stoller et al. J. Chem. Theory Comput. 12 (6), 2871 (2016). Crossref
19. N. T. H. Trung et al. IOP Conf. Ser.: Mater. Sci. Eng. 447, 012004 (2018). Crossref
20. K. Nordlund, S. L. Dudarev. C. R. Physique. 9 (3 − 4), 343 (2008). Crossref
21. S. Plimpton. J. Comp. Phys. 117, 1 (1995). Crossref
22. W. M. Brown et al. Computer Physics Communications. 182 (4), 898 (2011). Crossref
23. C. H. Rycroft. Chaos. 19, 041111 (2009). Crossref
24. R. E. Stoller. Symposium R - Microstructural Processes in Irradiated Materials. 650 (2000). Crossref
25. A. Stukowski. Modell. Simul. Mater. Sci. Eng. 20, 045021 (2012). Crossref
26. A. Stukowski. Modelling Simul. Mater. Sci. Eng. 18, 015012 (2010). Crossref
27. K. Nordlund et al. Journal of Nuclear Materials. 512, 450 (2018). Crossref
28. G. S. Was. Fundamentals of Radiation Materials Science: Metals and Alloys. Springer, Berlin (2007) 827 p. Crossref
29. T. Diaz de la Rubia et al. Phys. Rev. Lett. 60, 76 (1987). Crossref
30. A. Calder et al. Philos. Mag. 90, 863 (2010). Crossref
31. K. P. Zolnikov, A. V. Korchuganov and D. S. Kryzhevich. J. Phys.: Conf. Ser. 774, 012130 (2016). Crossref
32. G. H. Kinchin, R. S. Pease. Reports on Progress in Physics. 18(1), 1 (1955). Crossref
33. M. Norgett, M. Robinson and I. Torrens. Nucl. Eng. Des. 33, 50 (1975). Crossref
34. K. Nordlund et al. Report Nuclear Science. NEA/NSC/DOC (2015).
35. R. E. Stoller. Comprehensive Nuclear Materials. 1, 293 (2012). Crossref
36. E. A. Korznikova, I. A. Shepelev, A. P. Chetverikov, S. Y. Fomin, S. V. Dmitriev. IOP Conference Series: Materials Science and Engineering. 447, 012030 (2018). Crossref
37. S. V. Dmitriev, E. A. Korznikova, A. P. Chetverikov. Journal of Experimental and Theoretical Physics. 126, 347 (2018). Crossref
38. S. V. Dmitriev, N. N. Medvedev, A. P. Chetverikov, K. Zhou, M. G. Velarde. Physica Status Solidi - Rapid Research Letters. 11, 1700298 (2017). Crossref
39. A. P. Chetverikov, I. A. Shepelev, E. A. Korznikova, A. A. Kistanov, S. V. Dmitriev, M. G. Velarde. Computational Condensed Matter. 13, 59 (2017). Crossref

Similar papers

Funding

1. Russian Foundation for Basic Research - project №18‑42‑220002
2. Ministry of Education and Science of the Russian Federation - project № 3.4820.2017 / БЧ
3. Government of the Altai Krai - project №18‑42‑220002