Low frequency vibrations of carbon nanoscrolls

A. Savin, E.A. Korznikova, S.V. Dmitriev show affiliations and emails
Accepted  30 March 2016
Citation: A. Savin, E.A. Korznikova, S.V. Dmitriev. Low frequency vibrations of carbon nanoscrolls. Lett. Mater., 2016, 6(1) 77-81
BibTex   https://doi.org/10.22226/2410-3535-2016-1-77-81


The carbon atoms are able to create a huge variety of structures, including recently discovered its monatomic layer - graphene attracting a great attention of researchers. Graphene is a recently discovered material with prominent properties those flexural rigidity allows creation of different volume conformations. The geometric configuration of those configurations including the folds, scrolls and other secondary structures is determined are determined by the balance of energy gain due to increase of the number of atoms involved in van der Waals interactions with the energy loss due to graphene bending. A simple model of a molecular chain on the plane, which allows the description of folded and scrolled packings of graphene nanoribbons, has been proposed. Earlier possible steady states of graphene nanoribbons have been obtained using this model and compares to full atomic modelling. In this paper the simulation of high-frequency nonlinear vibrations of scrolled carbon nanoribbons packages was performed. It was revealed that the first three low-frequency natural scroll vibrations ("twisting-untwisting" and "transverse compression" modes) are stable only if their energy does not exceed 0.1 eV, and the interaction of these modes starts to occur at higher energy. The excitation of one mode leads to the excitation of the two others.

References (37)

1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
2. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
3. C. Soldano, A. Mahmood, and E. Dujardin, Carbon 48, 2127 (2010).
4. J. A. Baimova, B. Liu, S. V. Dmitriev, and K. Zhou, Phys.Status Solidi - R 8, 336 (2014).
5. J. A. Baimova, B. Liu, S. V. Dmitriev, N. Srikanth, K. Zhou, Phys. Chem. Chem. Phys. 16, 19505 (2014).
6. J. A. Baimova, E. A. Korznikova, S. V. Dmitriev, B. Liu, K. Zhou, Rev. Adv. Mater. Sci. 39, 69 (2014).
7. A. V. Orlov and I. A. Ovid’ko, Rev. Adv. Mater. Sci. 40, 249(2015).
8. Z. Xu and M. J. Buehler, ACS Nano 4, 3869 (2010).
9. W. Li, X. Zheng, B. Liu, X. Sun, T. Wang, J. Zhang, Y. Yan, Carbon 89, 272 (2015).
10. W. Bollmann and J. Spreadborough, Nature 186, 29(1960).
11. S. Zhu and T. Li, J. Phys. D: Appl. Phys. 46, 075301 (2013).
12. G. Cheng, I. Calizo, X. Liang, B. A. Sperling, A. C. Johnston-Peck, W. Li, J. E. Maslar, C. A. Richtera, and A. R. H. Walker, Carbon 76, 257 (2014).
13. H. Q. Zhou, C. Y. Qiu, H. C. Yang, F. Yu, M. J. Chen, L. J. Hu, Y. J. Guo, and L. F. Sun, Chem. Phys. Lett. 501, 475 (2011).
14. X. Chen, R. A. Boulos, J. F. Dobson, and C. L. Raston, Nanoscale, 5, 498 (2013).
15. M. V. Savoskin, V. N. Mochalin, A. P. Yaroshenko, N. I. Lazareva, T. E. Konstantinova, I. V. Barsukov, andI. G. Prokofiev, Carbon 45, 2797 (2007).
16. X. Xie, L. Ju, X. Feng, Y. Sun, R. Zhou, K. Liu, S. Fan, Q. Li, and K. Jiang, Nano Lett. 9, 2565 (2009).
17. A. L. Chuvilin, V. L. Kuznetsov, and A. N. Obraztsov, Carbon 47, 3099 (2009).
18. H. Pan, Y. Feng, and J. Lin, Phys. Rev. B 72, 085415 (2005).
19. R. Rurali, V. R. Coluci, and D. S. Galvao, Phys. Rev. B 74, 085414 (2006).
20. Y. Chen, J. Lu, and Z. Gao, J. Phys. Chem. C 111, 1625(2007).
21. X. Shi, N. M. Pugno, Y. Cheng, and H. Gao, J. Appl. Phys.95, 163113 (2009).
22. B. V. C. Martins and D. S. Galvao, Nanotechnology 21, 075710 (2010).
23. S. Huang, B. Wang, M. Feng, X. Xu, X. Cao, and Y. Wang, Surf. Sci. 634, 3 (2015).
24. E. Perim, R. Paupitz, and D. S. Galvao, J. Appl. Phys. 113, 054306 (2013).
25. Y. Wang, H. F. Zhan, C. Yang, Y. Xiang, and Y. Y. Zhang, Comp. Mater. Sci 96 300 (2015).
26. X. Shi, Y. Cheng, N. M. Pugno, and H. Gao, J. Appl. Phys.96, 053115 (2010).
27. Z. Zhang and T. Li, Appl. Phys. Lett. 97, 081909 (2010).
28. L. Chu, Q. Xue, T. Zhang, and C. Ling, J. Phys. Chem. C115, 15217 (2011).
29. N. Patra, Y. Song, and P. Kral, ACS Nano 5, 1798 (2011).
30. H. Y. Song, S. F. Geng, M. R. An, and X. W. Zha, J. Appl.Phys. 113, 164305 (2013).
31. X. Shi, Y. Cheng, N.M. Pugno, H. Gao Small, 6 (6), 739-744 (2010).
32. L. J. Yi, Y. Y. Zhang, C. M. Wang, and T. C. Chang, J. Appl.Phys. 115, 204307 (2014). Nanoscale 5, 5450 (2013).
33. Z. Zhang, Y. Huang, and T. Li, J. Appl. Phys. 112, 063515(2012).
34. X. Shi, N. M. Pugno, H. Gao, Acta Mech. Solida Sin. 23, 484 (2010).
35. X. Shi, N. M. Pugno, H. Gao, Int. J. Fract. 171, 163 (2011).
36. A. V. Savin, E. A. Korznikova, and S. V. Dmitriev, Phys. Rev. B 92, 035412 (2015).
37. A. V. Savin, Е. А. Korznikova, S. V. Dmitriev, Physics ofthe Solid State 57(11), 2348-2355 (2015).

Cited by (5)

Sergey V. Dmitriev, Julia A. Baimova, Elena A. Korznikova, Alexander P. Chetverikov. Understanding Complex Systems: Nonlinear Systems, Vol. 2, Chapter 7, p.175 (2018). Crossref
I. Evazzade, M. Roknabadi, M. Behdani, F. Moosavi, D. Xiong, K. Zhou, Sergey V. Dmitriev. Eur. Phys. J. B. 91(7) (2018). Crossref
Leysan Kh. Rysaeva, Dmitry S. Lisovenko, Valentin A. Gorodtsov, Julia A. Baimova. Computational Materials Science. 172, 109355 (2020). Crossref
Julia A. Baimova, Leysan Kh. Galiakhmetova, Radik R. Mulyukov. Computational Materials Science. 192, 110301 (2021). Crossref
L. Kh. Rysaeva. J. Phys.: Conf. Ser. 1435(1), 012066 (2020). Crossref

Similar papers