Effect of deformation on dehydrogenation mechanisms of crumpled graphene: molecular dynamics simulation

K.A. Krylova, J.A. Baimova, R.R. Mulyukov show affiliations and emails
Received: 20 November 2018; Revised: 17 January 2019; Accepted: 21 January 2019
Citation: K.A. Krylova, J.A. Baimova, R.R. Mulyukov. Effect of deformation on dehydrogenation mechanisms of crumpled graphene: molecular dynamics simulation. Lett. Mater., 2019, 9(1) 81-85
BibTex   https://doi.org/10.22226/2410-3535-2019-1-81-85


Crumpled graphene, consisting of randomly oriented graphene flakes, repeated along three x, y, z coordinate axesIn this work, the effect of hydrostatic compression on dehydrogenation of crumpled graphene is investigated using molecular dynamics simulation. Crumpled graphene is a carbon structure composed of a large number of graphene flakes interacted by van der Waals forces. These ultralight materials have unique mechanical properties and can be used in various applications, for example, in hydrogen technologies. One of the important issues in the study of carbon structures is the search for the new materials for hydrogen storage and transportation. In the present work, it is shown that pores of crumpled graphene can be used as the caves for the storage of hydrogen atoms and molecules, and hydrostatic compression is an effective way of keeping hydrogen inside the caves. Based on the analysis of changes in the capacity of hydrogen absorption, it is found that the application of deformation leads to a significant improvement in the sorption characteristics of crumpled graphene. At the same time, hydrostatic compression of crumpled graphene leads to an increase in volumetric hydrogen capacity. It has been established that, with an increase in the degree of compression, the number of hydrogen atoms leaving the pores of crumpled graphene decreases after exposure at 300 K. It is expected that the subsequent heating of the structure will lead to the release of hydrogen due to the opening of graphene flakes and an increase in thermal fluctuation oscillations of atoms, which is important for the dehydrogenation process.

References (37)

1. L. Yu. Antipina, P. V. Avramov, S. Sakai, H. Naramoto, M. Ohtomo, S. Entani, Y. Matsumoto, P. B. Sorokin. Phys. Rev. B. 86, 085435 (2012). Crossref
2. L. Zhang, F. Zhang, X. Yang, G. Long, Y. Wu, T. Zhang, K. Leng, Y. Huang, Y. Ma, A. Yu, Y. Chen. Sci. Rep. 3, 1408 (2013). Crossref
3. J. A. Baimova, B. Liu, S. V. Dmitriev, K. Zhou. J. Phys. D: Appl. Phys. 48 (9), 095302 (2015). Crossref
4. Z. Tang, X. Li, T. Sun, S. Shen, J. Yang. Micropor. Mesopor. Mat. 272, 40 (2018). Crossref
5. A. Pedrielli, S. Taioli, G. Garberoglio, N. M. Pugno. Micropor. Mesopor. Mat. 257, 222 (2018). Crossref
6. Y. Wang, Y. Zhu, F. Wang, X. Liu, H. Wu. Carbon. 118, 588 (2017). Crossref
7. L. A. Chernozatonsky, V. A. Demin. JETP Lett. 107 (5-6), 333 (2018). Crossref
8. N. Novikov, M. Maslov, K. Katin, V. Prudkovskiy. Letters on Materials. 7 (4), 433 (2017). Crossref
9. E. A. Belenkov, V. A. Greshnyakov. Physics of the Solid State. 57 (6), 1253 (2015). Crossref
10. E. A. Belenkov, V. A. Greshnyakov. Letters on Materials. 7 (3), 318 (2017). (in Russian) [Е.А. Беленков, В.А. Грешняков. Письма о материалах. 7 (3), 318 (2017).]. Crossref
11. K. A. Krylova, Y. A. Baimova, S. V. Dmitriev, R. R. Mulyukov. Physics of the Solid State. 58 (2), 394 (2016). Crossref
12. V. V. Mavrinskii, E. A. Belenkov. Letters on Materials. 8 (2), 169 (2018). (in Russian) [В.В. Мавринский, Е.А. Беленков. Письма о материалах. 8 (2), 169 (2018).]. Crossref
13. D. S. Lisovenko, J. A. Baimova, L. Kh. Rysaeva, V. A. Gorodtsov, A. I. Rudskoy, S. V. Dmitriev. Phys. Status Solidi (b). 253 (7), 1295 (2016). Crossref
14. E. Poirier, R. Chaine, P. Bernard, D. Cossement, L. Lafi, E. Melanson, T. K. Bose, S. Desilets. Appl. Phys. A. 78, 961 (2004). Crossref
15. T. Heine, L. Zhechkov, G. Seiferta. Phys. Chem. Chem. Phys. 6, 980 (2004). Crossref
16. M. Marella, M. Tomaselli. Carbon. 44 (8), 1404 (2006). Crossref
17. G. E. Froudakis. Mater. Today. 14 (7-8), 324 (2011). Crossref
18. Yu. S. Nechaev and N. T. Veziroglu. Int. J. Phys. Sci. 10 (2), 54 (2015). Crossref
19. K. P. Katin, V. S. Prudkovskiy, M. M. Maslov. Phy. Lett. A. 381 (33), 2686 (2017). Crossref
20. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall et. al. Science. 323, 610 (2009). Crossref
21. L. Zhang, X. Zeng, X. Wang. Sci. Rep. 3, 3162 (2013). Crossref
22. S. Stuart, A. Tutein, J. Harrison, J. Chem. Phys. 112, 6472 (2000). Crossref
23. B. Liu, J. A. Baimova, S. V. Dmitriev, X. Wang, H. Zhu, K. Zhou, J. Phys. D 46 (30), 305302 (2013). Crossref
24. J. A. Baimova, R. T. Murzaev, I. P. Lobzenko, S. V. Dmitriev, K. Zhou. Journal of Experimental and Theoretical Physics. 122 (5), 869 (2016). Crossref
25. J. A. Baimova, R. T. Murzaev, A. I. Rudskoy. Phys. Lett. A. 381 (36), 3049 (2017). Crossref
26. Q. X. Pei, Y. W. Zhang, V. B. Shenoy. Carbon. 48 (3), 898 (2010). Crossref
27. N.-N. Li, Z.-D. Sha, Q.-X. Pei, Y.-W. Zhang. The Journal of Physical Chemistry C. 118 (25), 13769 (2014). Crossref
28. Z. Zhang, Y. Xie, Q. Peng, Y. Chen. Solid State Commun. 213 - 214, 31 (2015). Crossref
29. C. Li, G. Li, H. Zhao. Carbon. 72, 185 (2014). Crossref
30. A. Montazeri, S. Ebrahimi, H. Rafii-Tabar. Molecular Simulation. 41 (14), 1212 (2014). Crossref
31. J. A. Baimova, B. Liu, S. V. Dmitriev, K. Zhou. Phys. Status Solidi (RRL). 8 (4), 336 (2014). Crossref
32. J. A. Baimova, R. T. Murzaev, S. V. Dmitriev. Physics of the Solid State. 56 (10) 2010 (2014). Crossref
33. J. A. Baimova, B. Liu, S. V. Dmitriev, N. Srikanth, K. Zhou. Phys. Chem. Chem. Phys. 16, 19505 (2014). Crossref
34. Z. Sun, D. K. James, J. M. Tour, J. Phys. Chem. Lett. 2011, 2, 2425 - 2432. Crossref
35. A. V. Savin, Y. S. Kivshar. Europhys. Lett. 2010, 89, 46001. Crossref
36. X. Gao, Y. Wang, X. Liu, T.-L. Chan, S. Irle, Y. Zhao, S. B. Zhang. Phys. Chem. Chem. Phys. 13, 19449 (2011). Crossref
37. V. D. Camiola, R. Farchioni, T. Cavallucci, A. Rossi, V. Pellegrini, V. Tozzini. Frontiers in Materials. 2, 3 (2015). Crossref

Cited by (11)

Liliya L. Safina, Julia A. Baimova. Micro & Nano Letters. 15(3), 176 (2020). Crossref
Karina A. Krylova, Julia A. Baimova, Ivan P. Lobzenko, Andrey I. Rudskoy. Physica B: Condensed Matter. 583, 412020 (2020). Crossref
Julia A. Baimova, Karina A. Krylova, Ivan P. Lobzenko. J. Micromech. Mol. Phys. 04(04), 1950009 (2019). Crossref
A.A. Kachina. Computational and Theoretical Chemistry. 1189, 112981 (2020). Crossref
Liliya R. Safina, Karina A. Krylova, Ramil T. Murzaev, Julia A. Baimova, Radik R. Mulyukov. Materials. 14(9), 2098 (2021). Crossref
V. A. Greshnyakov, E. A. Belenkov. J Struct Chem. 61(6), 835 (2020). Crossref
K. A. Krylova, L. R. Safina. J. Phys.: Conf. Ser. 1435(1), 012064 (2020). Crossref
L. Safina, R. Murzaev, K. Krylova. IOP Conf. Ser.: Mater. Sci. Eng. 1008(1), 012054 (2020). Crossref
N. Apkadirova, K. Krylova. IOP Conf. Ser.: Mater. Sci. Eng. 1008(1), 012051 (2020). Crossref
K. Katin, S. Kaya, M. Maslov. Lett. Mater. 12(2), 148 (2022). Crossref
Karina A. Krylova, Liliya R. Safina, Stepan A. Shcherbinin, Julia A. Baimova. Materials. 15(11), 4038 (2022). Crossref

Similar papers