Interaction of impurity atoms of light elements with self-interstitials in fcc metals

I.V. Zorya, G.M. Poletaev ORCID logo , R.Y. Rakitin, M.A. Ilyina, M.D. Starostenkov show affiliations and emails
Received 05 January 2019; Accepted 13 March 2019;
Citation: I.V. Zorya, G.M. Poletaev, R.Y. Rakitin, M.A. Ilyina, M.D. Starostenkov. Interaction of impurity atoms of light elements with self-interstitials in fcc metals. Lett. Mater., 2019, 9(2) 207-211
BibTex   https://doi.org/10.22226/2410-3535-2019-2-207-211

Abstract

The interaction of impurity atoms of light elements with self-interstitials in metals with fcc lattice is studied by the molecular dynamics methodThe interaction of impurity atoms of light elements C, N, O with self-interstitials in fcc metals Ni, Ag and Al was studied by the molecular dynamics method. It is shown that the self-interstitial atom in fcc metals migrates through at least two mechanisms: by the displacement and rotation of the <100> dumbbell and by the crowdion mechanism. The first mechanism is characterized by broken trajectories of atomic displacements, the second — by straight ones along close-packed directions in the crystal. The binding energies of impurity atoms with self-interstitials in Ni, Ag and Al have been calculated. It is shown that impurity atoms are effective “traps” for interstitial atoms that migrate relatively quickly in a crystal. When a self-interstitial atom and an impurity atom interact, the interstitial atom forms a dumbbell configuration with the axis along the <100> direction, and the impurity atom is located in the nearest octahedral pore. To analyze the effect of impurities on the diffusion mobility of interstitial atoms, we calculated the activation energy of migration of the interstitial atom in pure metals and metals containing 10 % of impurity atoms. It was found that the mobility of interstitial atoms is significantly reduced due to the presence of impurities in the metal. At the same time, the contribution of the crowdion mechanism also decreased.

References (27)

1. H. J. Goldschmidt. Interstitial Alloys. London, Butterworths (1967) 640 p.
2. L. E. Toth. Transition metal carbides and nitrides. New York, Academic Press (1971) 276 p.
3. B. J. Lee. Acta Materialia. 54, 701 (2006). Crossref
4. C. Domain, C. S. Becquart, J. Foct. Physical Revew B. 69, 144112 (2004). Crossref
5. G. M. Poletaev, M. D. Starostenkov. Physics of the Solid State. 52 (6), 1146 (2010). Crossref
6. S. Mahmoud, M. Trochet, O. A. Restrepo, N. Mousseau. Acta Materialia. 144, 679 (2018). Crossref
7. Yu. N. Osetsky, A. Serra, V. Priego, F. Gao, D. J. Bacon. MRS Online Proceeding Library. 527, 49 (1998). Crossref
8. S. Bukkuru, U. Bhardwaj, S. K. Rao, A. D. P. Rao, M. Warrier, M. C. Valsakumar. Materials Research Express. 5 (3), 035513 (2018). Crossref
9. L. Pauling. The Nature of the Chemical Bond, Third Edition. Ithaca, Cornell University Press (1960) 664 p.
10. F. Cleri, V. Rosato. Physical Review B. 48 (1), 22 (1993). Crossref
11. D. V. Novoselova, G. M. Poletaev, V. V. Kovalenko. Letters on Materials. 8 (1), 11 (2018). (in Russian) [Д. В. Новоселова, Г. М. Полетаев, В. В. Коваленко. Письма о материалах. 8 (1), 11 (2018).]. Crossref
12. G. Poletaev, I. Zorya, R. Rakitin. Computational Materials Science. 148, 184 (2018). Crossref
13. G. M. Poletaev, I. V. Zorya, D. V. Novoselova, M. D. Starostenkov. International Journal of Materials Research. 108 (10), 785 (2017). Crossref
14. G. M. Poletaev, M. D. Starostenkov. Technical Physics Letters. 29 (6), 454 (2003). Crossref
15. I. V. Zorya, G. M. Poletaev, M. D. Starostenkov. Fundamental’nye problemy sovremennogo materialovedenia. 15 (4), 526 (2018) (in Russian) [И. В. Зоря, Г. М. Полетаев, М. Д. Старостенков. Фундаментальные проблемы современного материаловедения. 15 (4), 526 (2018).]. Crossref
16. M. Ruda, D. Farkas, G. Garcia. Computational Materials Science. 45, 550 (2009). Crossref
17. P. Vashishta, R. K. Kalia, A. Nakano, J. P. Rino. Journal of Applied Physics. 103, 083504 (2008). Crossref
18. M. A. San Miguel, J. F. Sanz. Physical Review B. 58, 2369 (1998). Crossref
19. H. J. Wollenberger. Tochechnyye defekty. In: Fizicheskoye metallovedeniye. Vol. 3. Fiziko-mekhanicheskiye svoystva metallov i splavov. Ed. by R. W. Cahn. Moscow, Mir (1987) P. 5 - 74. (in Russian) [Волленбергер Г. Й. Точечные дефекты. В кн.: Физическое металловедение. Т. 3. Физико-механические свойства металлов и сплавов.Под ред. Р. Кана. Москва, Мир (1987) C. 5 - 74.].
20. P. Zhao, Y. Shimomura. Computational Materials Science. 14, 84 (1999). Crossref
21. V. V. Kirsanov. Sorosovskiy obrazovatelniy zhurnal. 7 (9), 103 (2001). (in Russian) [В. В. Кирсанов. Соросовский образовательный журнал. 7 (9), 103 (2001).].
22. V. A. Stepanov. Technical Physics. The Russian Journal of Applied Physics. 43 (8), 938 (1998).
23. T. Amino, K. Arakawa, H. Mori. Scientific Reports. 6, 26099 (2016). Crossref
24. S. V. Dmitriev, N. N. Medvedev, A. P. Chetverikov, K. Zhou, M. G. Velarde. Phys. Status Solidi RRL. 11, 1700298 (2017). Crossref
25. A. M. Bayazitov, E. A. Korznikova, I. A. Shepelev, A. P. Chetverikov, S. Kh. Khadiullin, E. A. Sharapov, P. V. Zakharov, S. V. Dmitriev. IOP Conf. Series: Materials Science and Engineering. 447, 012040 (2018). Crossref
26. A. V. Korchuganov, K. P. Zolnikov, D. S. Kryzhevich, S. G. Psakhie. Russian Physics Journal. 60, 170 (2017). Crossref
27. A. N. Orlov, Y. V. Trushin. Energies of point defects in metals. Moscow, Energoatomizdat (1983) 80 p. (in Russian) [А. Н. Орлов, Ю. В. Трушин. Энергии точечных дефектов в металлах. Москва, Энергоатомиздат (1983) 80 с.].

Similar papers