Disclinations in polycrystalline graphene and pseudo-graphenes. Review

A.E. Romanov ORCID logo , M.A. Rozhkov, A.L. Kolesnikova show affiliations and emails
Received 22 October 2018; Accepted 06 November 2018;
Citation: A.E. Romanov, M.A. Rozhkov, A.L. Kolesnikova. Disclinations in polycrystalline graphene and pseudo-graphenes. Review. Lett. Mater., 2018, 8(4) 384-400
BibTex   https://doi.org/10.22226/2410-3535-2018-4-384-400

Abstract

Assembling of pseudo-graphene from grain boundaries with structural units 5-7. In this review, we consider wedge disclinations as the main structural defects in 2D graphene crystal hexagonal lattice. Disclinations are associated with improper carbon rings, i.e. rings having 4, 5, 7 or 8 members to the contrary of proper 6-member carbon rings constituting ideal 2D graphene crystal lattice. With the help of disclinations, we build the models for grain boundaries and other interfaces in graphene polycrystals as well as for pseudo-graphenes. The pseudo-graphenes are treated as graphene crystals with high density of periodically distributed disclinations with zero total charge. The geometry and energy of disclinated graphene configurations are analyzed with the help of molecular dynamics (MD) simulation technique and in the framework of the theory of defects in elastic continuum. We demonstrate that the energy of the modeled graphene interfaces reaches the value of 2 eV/Å. For symmetric tilt grain boundaries in graphene the energy stays below 0.5 eV/Å when the boundaries are in so-called equilibrium state. In the case of transition of a grain boundary to non-equilibrium state, the energy of the boundary can be up to three times higher. For investigated pseudo-graphenes, there is substantial energy excess in comparison to conventional grapheme; the found energy excess can be of the order of 1eV per carbon atom. In conclusion, it is argued that studying the properties of disclinations in graphene opens a new direction in graphene science and technology – graphene defect engineering.

References (77)

1. K. S. Novoselov, A. K. Geim, S. V Morozov, D. Jiang, Y. Zhang, S. V Dubonos, I. V Grigorieva, A. A. Firsov. Science. 306(5696), 666, (2004). Crossref
2. K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz. Phys. Rev. Lett. 105(13), 136805 (2010). Crossref
3. K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios. Nano Lett. 12(1), 161 (2012). Crossref
4. H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P. D. Ye, ACS Nano. 8(4), 4033 (2014). Crossref
5. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov. Nature. 438(7065), 197 (2005). Crossref
6. Y. Zhang, Y.-W. Tan, H. L. Stormer, P. Kim, Nature. 438(7065), 201 (2005). Crossref
7. K. S. Novoselov, Z. Jiang, Y. Zhang, S. V Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, A. K. Geim, Science. 315(5817), 1379 (2007). Crossref
8. F. Scarpa, S. Adhikari, A. Srikantha Phani. Nanotechnology. 20(6), 065709 (2009). Crossref
9. C. Lee, X. Wei, J. W. Kysar, J. Hone. Science. 321(5887), 385 (2008). Crossref
10. P. R. Wallace. Phys. Rev. 71(9), 622 (1947). Crossref
11. A. H. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim. Rev. Mod. Phys. 81(1), 109 (2009). Crossref
12. T. Ando. NPG Asia Mater. 1(1), 17 (2009). Crossref
13. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari. Nat. Nanotechnol. 3(4), 210 (2008). Crossref
14. H. Yang, J. Heo, S. Park, H. J. Song, D. H. Seo, K.-E. Byun, P. Kim, I. Yoo, H.-J. Chung, K. Kim. Science. 336(6085), 1140 (2012). Crossref
15. F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari. Nat. Photonics. 4(9), 611 (2010). Crossref
16. S. J. Koester, Mo Li. IEEE J. Sel. Top. Quantum Electron. 20(1), 84 (2014). Crossref
17. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard. Nat. Nanotechnol. 5(10), 722 (2010). Crossref
18. E. Kaxiras. Atomic and Electronic Structure of Solids. Cambridge, Cambridge University Press (2003).
19. L. Liu, M. Qing, Y. Wang, S. Chen. J. Mater. Sci. Technol. 31(6), 599 (2015). Crossref
20. H. Wang, Q. Wang, Y. Cheng, K. Li, Y. Yao, Q. Zhang, C. Dong, P. Wang, U. Schwingenschlögl, W. Yang. Nano Lett. 12(1), 141 (2012). Crossref
21. R. R. Nair, I.-L. Tsai, M. Sepioni, O. Lehtinen, J. Keinonen, A. V. Krasheninnikov, A. H. Castro Neto, M. I. Katsnelson, A. K. Geim, I. V. Grigorieva. Nat. Commun. 4(1), 2010 (2013). Crossref
22. J. Kotakoski, A. V Krasheninnikov, U. Kaiser, J. C. Meyer, Phys. Rev. Lett. 106(10), 105505 (2011). Crossref
23. A. L. Kolesnikova, M. A. Rozhkov, I. Hussainova, T. S. Orlova, I. S. Yasnikov, L. V Zhigilei, A. E. Romanov. Rev. Adv. Mater. Sci. 52, 91 (2017).
24. R. Grantab, V. B. Shenoy, R. S. Ruoff. Science. 330(6006), 946 (2010). Crossref
25. J. H. Warner, E. R. Margine, M. Mukai, A. W. Robertson, F. Giustino, A. I. Kirkland. Science 337(6091), 209 (2012). Crossref
26. A. J. Stone, D. J. Wales. Chem. Phys. Lett. 128(5-6), 501 (1986). Crossref
27. K. Kim, Z. Lee, W. Regan, C. Kisielowski, M. F. Crommie, A. Zettl. ACS Nano. 5(3), 2142 (2011). Crossref
28. J. Lahiri, Y. Lin, P. Bozkurt, I. I. Oleynik, M. Batzill. Nat. Nanotechnol. 5(5), 326 (2010). Crossref
29. O. V. Yazyev, S. G. Louie. Phys. Rev. B. 81(19), 195420 (2010). Crossref
30. P. Koskinen, S. Malola, H. Häkkinen. Phys. Rev. B. 80(7), 073401 (2009). Crossref
31. J. Gao, J. Yip, J. Zhao, B. I. Yakobson, F. Ding. J. Am. Chem. Soc. 133(13), 5009 (2011). Crossref
32. J. Coraux, A. T. N’Diaye, M. Engler, C. Busse, D. Wall, N. Buckanie, F.-J. M. zu Heringdorf, R. van Gastel, B. Poelsema, T. Michely. New J. Phys. 11(2), 23006 (2009).
33. Z. H. Ni, H. M. Wang, Y. Ma, J. Kasim, Y. H. Wu, Z. X. Shen. ACS Nano. 2(5), 1033 (2008). Crossref
34. Z. Cheng, Q. Zhou, C. Wang, Q. Li, C. Wang, Y. Fang. Nano Lett. 11(2), 767 (2011). Crossref
35. C. J. Russo, J. A. Golovchenko. Proc. Natl. Acad. Sci. U. S. A. 109(16), 5953 (2012). Crossref
36. S. J. Stuart, A. B. Tutein, J. A. Harrison. J. Chem. Phys. 112(14), 6472 (2000). Crossref
37. J. Tersoff. Phys. Rev. Lett. 61(25), 2879 (1988). Crossref
38. https://openkim.org/dev-kim-item/LennardJones612_UniversalShifted__ MO_959249795837_002.
39. P. Hohenberg, W. Kohn. Phys. Rev. 136(3B), B864 (1964). Crossref
40. J. P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77(18), 3865 (1996). Crossref
41. I. S. Yasnikov, A. L. Kolesnikova, A. E. Romanov. Phys. Solid State. 58(6), 1184 (2016). Crossref
42. A. E. Romanov, V. I. Vladimirov. In: Dislocations in Solids (ed. by F. R. N. Nabarro). Amsterdam, North-Holland (1992) p. 191.
43. A. E. Romanov, A. L. Kolesnikova. Prog. Mater. Sci. 54(6), 740 (2009). Crossref
44. A. Richter, A. E. Romanov, W. Pompe, V. I. Vladimirov, Phys. Stat. Sol. B. 143(1), 43 (1987).
45. J. D. Eshelby. Proc. R. Soc. A. 241(1226), 376 (1957). Crossref
46. T. Mura. Micromechanics of Defects in Solids. Dordrecht / Boston / Lancaster, Martinus Nijhoff Publishers (1987).
47. A. L. Kolesnikova, T. S. Orlova, I. Hussainova, A. E. Romanov. Phys. Solid State. 56(12), 2573 (2014). Crossref
48. A. L. Kolesnikova, M. Yu. Gutkin, A. E. Romanov. Rev. Adv. Mater. Sci. 51(2), 130 (2017).
49. F. Kroupa. In: Theory of Crystal Defects. Proceedings of the Summer School held in Hrazany in September 1964, Prague, Academia - Publishing House of the Czechoslovak Academy of Sciences (1966) p. 276.
50. A. L. Kolesnikova, R. M. Soroka, A. E. Romanov. Materials Physics and Mechanics. 17(1), 71 (2013).
51. R. De Wit. Continual Theory of Disclinations. Moscow, Mir (1977). (in Russian) [Р. де Вит. Континуальная теория дисклинаций (Пер. с англ., под ред. А. А. Вакуленко). Москва, Мир (1977) 208 с.].
52. A. L. Kolesnikova, A. E. Romanov. Circular dislocation-disclination loops and their application to boundary problem solution in the theory of defects. Preprint No 1019, Leningrad, Phys.-Tech. Inst. (1986). (in Russian) [А. Л. Колесникова, А. Е. Романов, Круговые дислокационно-дисклинационные петли и их применение к решению граничных задач теории дефекюв, Ленинград, ФТИ. Препринт № 1019 (1986) 62 с.].
53. A. L. Kolesnikova, A. E. Romanov. Tech. Phys. Lett. 3(6), 272 (1987).
54. M. A. Rozhkov, A. L. Kolesnikova, T. S. Orlova, L. V. Zhigilei, A. E. Romanov. Mater. Phys. Mech. 29(1), 101 (2016).
55. A. E. Romanov, A. L. Kolesnikova, T. S. Orlova, I. Hussainova, V. E. Bougrov, R. Z. Valiev. Carbon. 81, 223 (2015). Crossref
56. J. Zhang, J. Zhao. Carbon. 55(1), 151 (2013). Crossref
57. V. V. Gertsman, A. A. Nazarov, A. E. Romanov, R. Z. Valiev, V. I. Vladimirov. Philos. Mag. A. 59(5), 1113 (1989). Crossref
58. A. A. Nazarov, A. E. Romanov, R. Z. Valiev. Acta Metal. Mater. 41(4), 1033 (1993). Crossref
59. Y. Liu, B. I. Yakobson. Nano Lett. 10(6), 2178 (2010). Crossref
60. A. Bagri, S.-P. Kim, R. S. Ruoff, V. B. Shenoy. Nano Lett. 11(9), 3917 (2011). Crossref
61. K. A. Ritter, J. W. Lyding. Nat. Mater. 8(3), 235 (2009). Crossref
62. P. Koskinen, S. Malola, H. Häkkinen. Phys. Rev. Lett. 101(11), 115502 (2008). Crossref
63. M. Acik, Y. J. Chabal. Jpn. J. Appl. Phys. 50(7), 070101 (2011). Crossref
64. M. A. Rozhkov, A. L. Kolesnikova, I. S. Yasnikov, A. E. Romanov. Low Temp. Phys. 44(9), 918 (2018). Crossref
65. Z. Wang, X.-F. Zhou, X. Zhang, Q. Zhu, H. Dong, M. Zhao, A. R. Oganov. Nano Lett. 15(9), 6182 (2015). Crossref
66. A. Mrozek, T. Burczyński. Comput. Assist. Methods Eng. Sci. 20(4), 309 (2017).
67. H. Zhu, A. T. Balaban, D. J. Klein, T. P. Živković. J. Chem. Phys. 101(6), 5281 (1994). Crossref
68. H. Sun, S. Mukherjee, M. Daly, A. Krishnan, M. H. Karigerasi, C. V. Singh. Carbon. 110, 443 (2016). Crossref
69. A. S. Kochnev, I. A. Ovid’ko, B. N. Semenov. Rev. Adv. Mater. Sci. 47, 79 (2016).
70. U. Sim, T.-Y. Yang, J. Moon, J. An, J. Hwang, J.-H. Seo, J. Lee, K. Y. Kim, J. Lee, S. Han. Energy Environ. Sci. 6(12), 3658 (2013). Crossref
71. O. V. Yazyev, L. Helm. Phys. Rev. B. 75(12), 125408 (2007). Crossref
72. F. Hao, D. Fang, Z. Xu. Appl. Phys. Lett. 99(4), 041901 (2011). Crossref
73. J. N. Grima, S. Winczewski, L. Mizzi, M. C. Grech, R. Cauchi, R. Gatt, D. Attard, K. W. Wojciechowski, J. Rybicki. Adv. Mater. 27(8), 1455 (2015). Crossref
74. A. N. Enyashin, A. L. Ivanovskii. phys. status solidi. 248(8), 1879 (2011). Crossref
75. A. N. Enyashin, A. L. Ivanovskii. Chem. Phys. Lett. 545, 78 (2012). Crossref
76. O. V. Yazyev. Phys. Rev. Lett. 101(3), 037203 (2008). Crossref
77. R. R. Nair, M. Sepioni, I.-L. Tsai, O. Lehtinen, J. Keinonen, A. V. Krasheninnikov, T. Thomson, A. K. Geim, I. V. Grigorieva. Nat. Phys. 8(3), 199 (2012). Crossref

Cited by (12)

1.
P. Zheng, X. Zhang, Y. Duan, M. Yan, R. Chapman, Y. Jiang, H. Li. Nanoscale. 12(18), 10140 (2020). Crossref
2.
M. Rozhkov, N. Abramenko, A. Kolesnikova, A. Romanov. Lett. Mater. 10(4s), 551 (2020). Crossref
3.
Z. Xiong, L. Zhong, H. Wang, X. Li. Materials. 14(5), 1192 (2021). Crossref
4.
Julia A. Baimova, Leysan Kh. Galiakhmetova, Radik R. Mulyukov. Computational Materials Science. 192, 110301 (2021). Crossref
5.
A. E. Romanov, A. L. Kolesnikova. Acta Mech. 232(5), 1901 (2021). Crossref
6.
K. Li, R. Khanna, H. Zhang, S. Ma, Z. Liang, G. Li, M. Barati, J. Zhang. Chemical Engineering Journal. 421, 129742 (2021). Crossref
7.
A. L. Kolesnikova, M. A. Rozhkov, A. E. Romanov. Mech. Solids. 55(1), 69 (2020). Crossref
8.
A. Klyavlina, L. Rysaeva, R. Murzaev. J. Phys.: Conf. Ser. 1435(1), 012063 (2020). Crossref
9.
D. Abdullina, L. Rysaeva, E. Korznikova, S. Dmitriev. IOP Conf. Ser.: Mater. Sci. Eng. 1008(1), 012069 (2020). Crossref
10.
L. Rysaeva, R. Murzaev, A. Kudreyko, E. Korznikova, S. Dmitriev. IOP Conf. Ser.: Mater. Sci. Eng. 1008(1), 012063 (2020). Crossref
11.
Y. Tomioka, T. Natsuki, J. Shi, X. Lei. Nanomaterials. 12(3), 436 (2022). Crossref
12.
X. Zhang, P. Zheng, Y. Ma, Y. Jiang, H. Li. Materials & Design. 217, 110605 (2022). Crossref

Similar papers