Effect of carbon and oxygen impurity atoms on the migration rate of tilt boundaries in fcc metals: a molecular dynamics simulation

G.M. Poletaev ORCID logo , I.V. Zorya, R.Y. Rakitin, M.A. Iliina, M.D. Starostenkov show affiliations and emails
Received 15 July 2019; Accepted 29 July 2019;
Citation: G.M. Poletaev, I.V. Zorya, R.Y. Rakitin, M.A. Iliina, M.D. Starostenkov. Effect of carbon and oxygen impurity atoms on the migration rate of tilt boundaries in fcc metals: a molecular dynamics simulation. Lett. Mater., 2019, 9(4) 391-394
BibTex   https://doi.org/10.22226/2410-3535-2019-4-391-394

Abstract

The effect of carbon and oxygen impurity atoms on the migration rate of tilt boundaries with <100> and <111> misorientation axes in fcc metals is studied by the molecular dynamics methodThe effect of carbon and oxygen impurity atoms on the migration rate of tilt boundaries with the <100> and <111> misorientation axes in fcc metals Ni, Ag, Al was studied by means of the molecular dynamics method. It is shown that the introduction of impurity atoms of light elements led to a significant inhibition of the migration of grain boundaries: with the introduction of 5 % by almost an order of magnitude, 10 % — by two orders of magnitude. Carbon atoms tend to form aggregates, which, being fixed on the grain boundary, become effective stoppers that prevent the boundary moving. Oxygen atoms did not form aggregates, but because of the high values of the binding energy with the boundaries, they also effectively hampered their migration. In contrast to the formation of aggregates by carbon atoms, in the case of oxygen impurity, another effect takes place — “loosening” and an increase in the width of the boundary. For impurity atoms of carbon and oxygen, the binding energies with grain-boundary edge dislocations in the metals under consideration were calculated. The obtained values correlate well with the dependences of the grain boundary migration rate on the impurity concentration: the greatest effect of impurities on the boundary migration rate and the value of the binding energy were obtained for the Al-C system, the smallest — for Ag-O.

References (24)

1. G. Gottstein, L. S. Shvindlerman. Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, 2nd edn. Boca Raton, CRC Press (2009) 711 p. Crossref
2. R. W. Balluffi, J. W. Cahn. Acta Metallurgica. 29, 493 (1981). Crossref
3. M. Winning, A. D. Rollett, G. Gottstein, D. J. Srolovitz, A. Lim, L. S. Shvindlerman. Philosophical Magazine. 90, 3107 (2010). Crossref
4. K. P. Zolnikov, D. S. Kryzhevich, A. V. Korchuganov. Letters on Materials. 9 (2), 197 (2019). Crossref
5. Y. Huang, F. J. Humphreys. Acta Materialia. 47, 2259 (1999). Crossref
6. Y. Huang, F. J. Humphreys. Materials Chemistry and Physics. 132, 166 (2012). Crossref
7. G. Poletaev, I. Zorya, R. Rakitin. Computational Materials Science. 148, 184 (2018). Crossref
8. G. M. Poletaev, I. V. Zorya, M. D. Starostenkov, R. Yu. Rakitin, P. Ya. Tabakov. Journal of Experimental and Theoretical Physics. 128 (1), 88 (2019). Crossref
9. G. M. Poletaev, I. V. Zorya, M. D. Starostenkov, R. Yu. Rakitin, D. V. Kokhanenko. Russian Physics Journal. 61 (7), 1236 (2018). Crossref
10. R. G. A. Veiga, H. Goldenstein, M. Perez, C. S. Becquart. Scripta Materialia. 108, 19 (2015). Crossref
11. L. E. Karkina, I. N. Karkin, I. L. Yakovleva, T. A. Zubkova. The Physics of Metals and Metallography. 114 (2), 155 (2013). Crossref
12. A. Atrens. Scripta Metallurgica. 8, 401 (1974). Crossref
13. V. Sursaeva, P. Zieba. Defect and Diffusion Forum. 237 - 240, 578 (2005). Crossref
14. H. J. Goldschmidt. Interstitial Alloys. London, Butterworths (1967) 640 p. Crossref
15. L. Pauling. The Nature of the Chemical Bond, 3rd edn. Ithaca, Cornell University Press (1960) 664 p.
16. S. G. Protasova, V. G. Sursaeva, L. S. Shvindlerman. Physics of the Solid State. 45, 1471 (2003). Crossref
17. F. Cleri, V. Rosato. Physical Review B. 48 (1), 22 (1993). Crossref
18. I. V. Zorya, G. M. Poletaev, R. Y. Rakitin, M. A. Ilyina, M. D. Starostenkov. Letters on Materials. 9 (2), 207 (2019). Crossref
19. G. M. Poletaev, I. V. Zorya, D. V. Novoselova, M. D. Starostenkov. International Journal of Materials Research. 108 (10), 785 (2017). Crossref
20. G. M. Poletaev, D. V. Novoselova, I. V. Zorya, M. D. Starostenkov. Physics of the Solid State. 60 (5), 847 (2018). Crossref
21. I. V. Zorya, G. M. Poletaev, M. D. Starostenkov. Fundamentalnye problemy sovremennogo materialovedenia. 15 (4), 526 (2018). (in Russian) [И. В. Зоря, Г. М. Полетаев, М. Д. Старостенков. Фундаментальные проблемы современного материаловедения. 15 (4), 526 (2018).].
22. M. Ruda, D. Farkas, G. Garcia. Computational Materials Science. 45, 550 (2009). Crossref
23. P. Vashishta, R. K. Kalia, A. Nakano, J. P. Rino. Journal of Applied Physics. 103, 083504 (2008). Crossref
24. V. B. Vykhodets, T. E. Kurennykh, A. S. Lakhtin, A. Ya. Fishman. Solid State Phenomena. 138, 119 (2008). Crossref

Similar papers