Effect of grain boundary segregations on martensitic transformation temperatures in NiTi bi-crystals

R.I. Babicheva, A.S. Semenov, S.V. Dmitriev, K. Zhou show affiliations and emails
Received 31 December 2018; Accepted 27 February 2019;
Citation: R.I. Babicheva, A.S. Semenov, S.V. Dmitriev, K. Zhou. Effect of grain boundary segregations on martensitic transformation temperatures in NiTi bi-crystals. Lett. Mater., 2019, 9(2) 162-167
BibTex   https://doi.org/10.22226/2410-3535-2019-2-162-167

Abstract

Distribution of atoms in the tilt grain boundary (GB) area for NiTi bi-crystal without GB segregation and for materials having segregations of Ti or Ni atoms.NiTi alloys are very important in a number of applications since they demonstrate shape memory effect, which is due to the martensitic phase transition with the transition temperatures close to the room temperature. Many factors affect transition temperatures of the alloy, including a variation of its chemical composition and thermo-mechanical treatment, which affects grain size, dislocation density, and other crystal structure parameters. It is well-known that the chemical composition of the alloys in grain boundaries can differ significantly from that in the bulk due to segregation of certain elements from the matrix to the grain boundaries. The effect of grain boundary segregations on the martensite transformation temperatures is still poorly understood. In the present molecular dynamics study, the possible effect of segregation of Ti or Ni atoms along Σ25 tilt grain boundary on the forward and reverse martensitic transformations is analyzed. The segregation is simulated by replacing the monoatomic Ti or Ni layer in the grain boundary with Ni or Ti layer, respectively. The results are compared to the case of no segregations. We analyze the initial relaxed and thermalized structures of the bi-crystals in austenite state as well as the temperature dependencies of potential energy per atom and volumetric dilatation. It is found that segregations may significantly decrease the start and finish temperatures of the martensitic transformation, and this effect is more pronounced for segregations of Ni.

References (56)

1. T. Yoneyama, S. Miyazaki. Shape memory alloys for biomedical applications. Woodhead Publishing, Cambridge (2009) 337 p.
2. J. Mohd Jani, M. Leary, A. Subic, M. A. Gibson. Mater. Design. 56, 1078 (2014). Crossref
3. M. H. Elahinia, M. Hashemi, M. Tabesh, S. B. Bhaduri. Prog. Mater. Sci. 57, 911 (2012). Crossref
4. K. Otsuka, X. Ren. Prog. Mater. Sci. 50, 511 (2005). Crossref
5. L. Sun, W. M. Huang, Z. Ding, Y. Zhao, C. C. Wang, H. Purnawali, C. Tang et al. Mater. Design. 33, 577 (2012). Crossref
6. D. Raabe, S. Sandlöbes, J. Millán, D. Ponge, H. Assadi, M. Herbig, et al. Acta Mater. 61, 6132 (2013). Crossref
7. D. Raabe, M. Herbig, S. Sandlöbes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, P.-P. Choi. Curr. Opin. Solid St. M. 18, 253 (2014). Crossref
8. S. J. Dillon, M. Tang, W. C. Carter, M. P. Harmer. Acta Mater. 55, 6208 (2007). Crossref
9. C. Hu, J. Luo. Scripta Mater. 158, 11 (2019). Crossref
10. S. Yang, N. Zhou, H. Zheng, S. P. Ong, J. Luo. Phys. Rev. Lett. 120, 085702 (2018). Crossref
11. S. V. Divinski, H. Edelhoff, S. Prokofjev. Phys. Rev. B. 85, 144104 (2012). Crossref
12. T. Frolov, S. V. Divinski, M. Asta, Y. Mishin. Phys. Rev. Lett. 110, 255502 (2013). Crossref
13. D. Liu, M. Peterlechner, J. Fiebig et al. Intermetallics. 61, 30 (2015). Crossref
14. P. R. Cantwell, M. Tang, S. J. Dillon, J. Luo, G. S. Rohrer, M. P. Harmer. Acta Mater. 62, 1 (2014). Crossref
15. K. Tai, A. Lawrence, M. P. Harmer, S. J. Dillon. Appl. Phys. Lett. 102, 034101 (2013). Crossref
16. J. Zhang, C. C. Tasan, M. J. Lai, A.-C. Dippel, D. Raabe. Nature Commun. 8, 14210 (2017). Crossref
17. G. J. Tucker, D. L. McDowell. Int. J. Plast. 27, 841 (2011). Crossref
18. V. Turlo, T. J. Rupert. Acta Mater. 151, 100 (2018). Crossref
19. V. Borovikov, M. I. Mendelev, A. H. King. Int. J. Plast. 90, 146 (2017). Crossref
20. Z. Pan, T. J. Rupert. Phys. Rev. B. 93, 134113 (2016). 93.134113. Crossref
21. Z. Pan, T. J. Rupert. Acta Mater. 89, 205 (2015). Crossref
22. R. I. Babicheva, S. V. Dmitriev, D. V. Bachurin, N. Srikanth, Y. Zhang, S. W. Kok, K. Zhou. Int. J. Fatigue. 102, 270 (2017). Crossref
23. A. V. Zinovev, M. G. Bapanina, R. I. Babicheva, N. A. Enikeev, S. V. Dmitriev, K. Zhou. Phys. Met. Metallogr. 118, 65 (2017). Crossref
24. R. I. Babicheva, S. V. Dmitriev, L. Bai, Y. Zhang, S. W. Kok, G. Kang, K. Zhou. Comp. Mater. Sci. 117, 445 (2016). Crossref
25. R. I. Babicheva, S. V. Dmitriev, Y. Zhang, S. W. Kok, K. Zhou. J. Nanomat. 2015, 231848 (2015). Crossref
26. N. Zhou, T. Hu, J. Huang, J. Luo. Scripta Mater. 124, 160 (2016). Crossref
27. R. I. Babicheva, Kh. Ya. Mulyukov. Appl. Phys. A. Mater. 116, 1857 (2014). Crossref
28. J. Kang, G. C. Glatzmaier, S.-H. Wei. Phys. Rev. Lett. 111, 055502 (2013). Crossref
29. A. Kundu, K. M. Asl, J. Luo, M. P. Harmer. Scripta Mater. 68, 146 (2013). Crossref
30. J. Luo, H. Cheng, K. M. Asl, C. J. Kiely, M. P. Harmer. Science. 333, 1730 (2011). Crossref
31. L. Feng, R. Hao, J. Lambros, S. J. Dillon. Acta Mater. 142, 121 (2018). Crossref
32. A. Ahadi, A. R. Kalidindi, J. Sakurai, Y. Matsushita, K. Tsuchiya, C. A. Schuh. Acta Mater. 142, 181 (2018). Crossref
33. M. Callisti, B. G. Mellor, T. Polcar. Scripta Mater. 77, 52 (2014). Crossref
34. M. V. Petrik, A. R. Kuznetsov, N. A. Enikeev, Y. N. Gornostyrev, R. Z. Valiev. Phys. Met. Metallogr. 119, 607 (2018). Crossref
35. S.-J. Qin, J.-X. Shang, F.-H. Wang, Y. Chen. Mater. Design. 137, 361 (2018). Crossref
36. M. P. Kashchenko, V. G. Chashchina. Phys. Usp. 54, 331 (2011). Crossref
37. S. V. Dmitriev, M. P. Kashchenko, J. A. Baimova, R. I. Babicheva, D. V. Gunderov, V. G. Pushin. Letters on Materials. 7, 442 (2017). Crossref
38. S.-J. Qin, J.-X. Shang, X. Wang, F.-H. Wang. Appl. Surf. Sci. 353, 1052 (2015). Crossref
39. S. V. Dmitriev, R. I. Babicheva, D. V. Gunderov, V. V. Stolyarov, K. Zhou. Letters on Materials. 8, 225 (2018). Crossref
40. S. Plimpton. J. Comput. Phys. 117, 1 (1995). Crossref
41. W.-S. Ko, B. Grabowski, J. Neugebauer. Phys. Rev. B. 92, 134107 (2015). Crossref
42. W.-S. Ko, S. B. Maisel, B. Grabowski, J. B. Jeon, J. Neugebauer. Acta Mater. 123, 90 (2017). Crossref
43. M. Muralles, S.-D. Park, S. Y. Kim, B. Lee. Comp. Mater. Sci. 130, 138 (2017). Crossref
44. F. Yazdandoost, R. Mirzaeifar. J. Alloy. Compd. 709, 72 (2017). Crossref
45. M. P. Kashchenko, V. G. Chashchina. Materials. Science. Foundations. 81 - 82, 3 (2015). Crossref
46. J. D. Honeycutt, H. C. Andersen. J. Phys. Chem. 91, 4950 (1987). Crossref
47. A. Stukowski, V. V. Bulatov, A. Arsenlis. Modelling Simul. Mater. Sci. Eng. 20, 085007 (2012). Crossref
48. A. Stukowski. Modelling Simul. Mater. Sci. Eng. 18, 015012 (2010). Crossref
49. Y. C. Shu, K. Bhattacharya. Acta Mater. 46, 5457 (1998). Crossref
50. A. Stukowski, A. Arsenlis. Modelling Simul. Mater. Sci. Eng. 20, 035012 (2012). Crossref
51. R. D. Dar, H. Yan, Y. Chen. Scripta Mater. 115, 113 (2016). Crossref
52. H. Wang, X. Yi, Y. Zhu, et al. Mater. Charact. 140, 122 (2018). Crossref
53. Z. S. Tôkei, J. Bernardini, D. L. Beke. Acta Mater. 47, 1371 (1999). Crossref
54. N. B. Burbery, G. Po, R. Das, N. Ghoniem, W. G. Ferguson. Journal of Micromechanics and Molecular Physics. 2, 1750003 (2017). Crossref
55. Q. H. Fang, L. C. Zhang. Journal of Micromechanics and Molecular Physics. 1, 1650008 (2016). Crossref
56. R. D. Dar, Y. Chen. Appl. Phys. Lett. 110, 041906 (2017). Crossref

Similar papers

Funding

1. Russian Science Foundation - grant No. 17‑79‑10410 (molecular dynamics simulations)
2. Russian Science Foundation - grant No. 18‑72‑00006
3. Russian Foundation for Basic Research - grant No. 17-02-00984 (design of the research)