Martensitic phase transformation in NiTi bi-crystals with symmetric Ʃ25 twist and tilt grain boundaries

S. Dmitriev, R. Babicheva, D. Gunderov, V. Stolyarov, K. Zhou

Abstract

Formation of domains of different martensite variants in the bi-crystal with Ʃ25 twist grain boundaries.

Molecular dynamics simulations are carried out to reveal the GB effect on the martensitic transformation in bi-crystals of NiTi shape memory alloy. Temperatures of the phase transition are much lower in the bi-crystal with the twist grain boundaries as compared to that having tilt grain boundaries.NiTi alloys attract a lot of attention of researchers for a number of reasons; among them are their practical importance and challenges for theoretical understanding. The most exciting feature of these alloys is the shape memory effect due to the martensitic transformation at temperatures close to the room temperature. There exist many factors affecting the transition temperatures in such materials, such as a deviation from stoichiometric composition, dislocation density, grain size, and the type of grain boundaries. The latter factor is one of the less explored, and we are aware of just a few studies in this direction. In the present work, molecular dynamics simulations are carried out to reveal the effect of symmetric tilt and twist grain boundaries in bi-crystals with nanosized grains on the forward and reversed martensitic transformations during cooling down from the austenite B2 phase and subsequent heating up from the martensite B19’ phase. Phase composition, elastic strain components, relative change of volume, potential energy per atom, and shear stresses are calculated and analyzed as the functions of temperature. It is found that the type of grain boundaries in the bi-crystals strongly affects the transition temperatures. Start and finish temperatures of the forward and reverse martensitic transformations are much lower in the bi-crystal with twist grain boundaries as compared to that having tilt grain boundaries. Overall, the simulation results of this study are in a good qualitative agreement with the available experimental data.

References (33)

1.
K. Otsuka, C. M. Wayman. Shape memory materials. Cambridge, Cambridge University Press (1999) 284 p.
2.
T. Yoneyama, S. Miyazaki. Shape memory alloys for biomedical applications. Cambridge, Woodhead Publishing (2009) 337 p.
3.
L. Sun, W. M. Huang, Z. Ding, Y. Zhao, C. C. Wang, H. Purnawali, C. Tang et al. Mater. Des. 33, 577 (2012).
4.
Y. F. Li, X. J. Mi, J. Tan, B. D. Gao. Materials Science and Engineering A. 509, 8 (2009).
5.
R. I. Babicheva, Kh. Ya. Mulyukov, I. Z. Sharipov, I. M. Safarov. Physics of the Solid State. 54, 1480 (2012).
6.
R. I. Babicheva, I. Z. Sharipov, Kh. Ya. Mulyukov. Physics of the Solid State. 53, 1947 (2011).
7.
R. I. Babicheva, Kh. Ya. Mulyukov. Applied Physics A Materials Science & Processing. 116, 1857 (2014).
8.
T. Waitz, V. Kazykhanov, H. P. Karnthaler. Acta Mater. 52, 137 (2004).
9.
V. Brailovski, S. D. Prokoshkin, I. Yu. Khmelevskaya, K. E. Inaekyan, V. Demers, S. V. Dobatkin, E. V. Tatyanin. Materials Transactions. 47, 795 (2006).
10.
H. Zhang, X. Li, X. Zhang. Journal of Alloys and Compounds. 544, 19 (2012).
11.
S. Kajiwara. Metall. Trans. A. 17A, 1693 (1986).
12.
M. Ueda, H. Yasuda, Y. Umakoshi. Science and Technology of Advanced Materials. 3, 171 (2002).
13.
J. D. Livingston, B. Chalmers. Acta Metall. 5, 322 (1957).
14.
X. Zhang, K. Wang, W. Zhu, J. Chen, M. Cai, S. Xiao, H. Deng, W. Hu. Journal of Applied Physics. 123, 045105 (2018).
15.
S-J. Qin, J-X. Shang, F-H. Wang, Y. Chen. Materials and Design. 137, 361 (2018).
16.
C. L. Magee. The nucleation of martensite, Phase Transformations. Metals Park, Ohio, American Society for Metals (1969) pp. 115 – 156.
17.
K. Tsuzaki, N. Harada, T. Maki. J. Phys. IV. 5(C8), 167 (1995).
18.
V. V. Stolyarov, E. A. Klyatskina, V. F. Terentyev. Letters on Materials. 6(4), 355 (2016). DOI: 10.22226/2410‑3535‑2016‑4‑355‑359
19.
S. V. Dmitriev, M. P. Kashchenko, J. A. Baimova, R. I. Babicheva, D. V. Gunderov, V. G. Pushin. Letters on Materials. 7(4), 442 (2017). DOI: 10.22226/2410‑3535‑2017‑4‑442‑446
20.
R. I. Babicheva, S. V. Dmitriev, V. V. Stolyarov, K. Zhou. Letters on Materials. 7(4), 428 (2017). DOI: 10.22226/2410‑3535‑2017‑4‑428‑432
21.
R. I. Babicheva, J. A. Baimova, S. V. Dmitriev, V. G. Pushin. Letters on Materials 5(4), 359 (2015). DOI: 10.22226/2410‑3535‑2015‑4‑359‑363
22.
M. P. Kashchenko, V. G. Chashchina. Materials Science Foundations. 81 – 82, 3 (2015). DOI: 10.4028/www.scientific.net/MSFo.81-82.3
23.
S. Plimpton. J. Comput. Phys. 117, 1 (1995).
24.
W.‑S. Ko, B. Grabowski, J. Neugebauer. Physical Review B. 92(13), 134107 (2015).
25.
W.‑S. Ko, S. B. Maisel, B. Grabowski, J. B. Jeon, J. Neugebauer. Acta Mater. 123, 90 (2017).
26.
M. Muralles, S.‑D. Park, S. Y. Kim, B. Lee. Comput. Mater. Sci. 130, 138 (2017).
27.
A. Stukowski. Modelling Simul. Mater. Sci. Eng. 18, 015012 (2010).
28.
A. Stukowski, V. V. Bulatov, A. Arsenlis. Modelling Simul. Mater. Sci. Eng. 20, 085007 (2012).
29.
J. D. Honeycutt, H. C. Andersen. J. Phys. Chem. 91, 4950 (1987).
30.
D. Faken, H. Jónsson. Comp. Mater. Sci. 2, 279 (1994).
31.
A. Stukowski. Modelling Simul. Mater. Sci. Eng. 20, 045021 (2012).
32.
Y. C. Shu, K. Bhattacharya. Acta Mater. 46, 5457 (1998).
33.
M. P. Kashchenko, V. G. Chashchina. Phys. Usp. 54, 331 (2011).