Production of niobium vacuum-arc coating on a TiNi-based alloy

K.S. Senkevich, D.E. Gusev, N.N. Sitnikov, E.A. Vysotina, O.Z. Pozhoga, S.M. Sarychev show affiliations and emails
Received 11 December 2018; Accepted 05 June 2019;
Citation: K.S. Senkevich, D.E. Gusev, N.N. Sitnikov, E.A. Vysotina, O.Z. Pozhoga, S.M. Sarychev. Production of niobium vacuum-arc coating on a TiNi-based alloy. Lett. Mater., 2019, 9(3) 299-303


The structure, surface and deformation curves of the TiNi wire with Nb coating.The aim of this work is to produce a niobium coating by vacuum-arc deposition on a TiNi-based alloy. This method has not been studied in relation to titanium nickelide base alloys and is promising for the production of corrosion and wear resistant coatings for medical and technical applications. The niobium coating is deposited on the semi-finished products (wire and cylindrical specimens) made of titanium nickelide base alloy of composition Ti49.4Ni50.6 (at pct) and the surface subjected to mechanical grinding. It is stated that the obtained coating with a thickness of about 1 μm possesses drawbacks, such as ‘inherited’ surface profile formed by mechanical grinding of semi-finished products, and the drop phase, which is a typical unavoidable defect for this type of deposition method. At the same time, the surface layer of the alloy with a niobium coating exhibits a significantly higher microhardness (two times more) than the initial alloy. The effect of the revealed defects on the corrosion properties and wear resistance of the alloy requires further study. Bending deformation is used to study the mechanical behavior of the wire in the initial state and after coating deposition; it is stated that the coated wire exhibits superelastic behavior in bending identical to the initial wire. At the same time, deposition of the coating causes the formation of internal stress fields near the wire surface, and the effects of these fields lead to the elimination of non-recoverable deformation in the unloaded wire accumulated in the subsurface layers under loading.

References (28)

1. S. D. Prokoshkin, V. G. Pushin, E. P. Ryklina, I. Yu. Khmelevskaya. Phys. Met. Metal. 97 (1), 56 (2004).
2. Shape Memory Materials (Ed. by К. Otsuka, C. M. Wayman). Cambridge, Cambridge University Press (1999) 284 p.
3. L. S. Castleman, S. M. Motzkin, F. P. Alicandri, V. L. Bonawit, A. A. Johnson. J. of Biomed. Mat. Research. 10 (5), 695 (1976). Crossref
4. J. Ryhänen, E. Niemi, W. Serlo, E. Niemelä, P. Sandvik, H. Pernu, T. Salo. J. of Biomed. Mat. Research. 35 (4), 451 (1997). <451::AID-JBM5>3.0.CO;2-G. Crossref
5. D. J. Wever, A. G. Veldhuizen, M. M. Sanders, J. M Schakenraad, J. R. Van Horn. Biomaterials. 18 (16), 1115 (1997). Crossref
6. Y. Cheng, Y. F. Zheng. Surf. Coat. Technol. 200 (14-15), 4543 (2006). Crossref
7. A. Michae, A. Pequegnat, J. Wang, Y. N. Zhou, M. I. Khan. Surf. Coat. Technol. 324, 478 (2017). Crossref
8. S. Shabalovskaya, J. Anderegg, J. Van Humbeeck. Acta Biomater. 4 (3), 447 (2008). Crossref
9. L. L. Meisner, A. I. Lotkov, V. A. Matveeva, L. V. Artemieva, S. N. Meisner, A. L. Matveev. Adv. in Mater. Sci. and Eng. 2012, 706094 (2012). Crossref
10. A. I. Lotkov, L. L. Meisner, V. N. Grishkov. Phys. Metals Metallogr. 99 (5), 508 (2005).
11. M. A. Sevost’yanov, E. O. Nasakina, A. S. Baikin, K. V. Sergienko, S. V. Konushkin, M. A. Kaplan, A. V. Seregin, A. V. Leonov, V. A. Kozlov, A. V. Shkirin, N. F. Bunkin, A. G. Kolmakov, S. V. Simakov, S. V. Gudkov. J. Mater Sci: Mater Med. 29, 33 (2018). Crossref
12. Y. Cheng, W. Cai, Y. F. Zheng, H. T. Li, L. C. Zhao. Surf. Coat. Technol. 190 (2-3), 428 (2005). Crossref
13. Y. Zhou, M. Li, Y. Cheng, Y. F. Zheng, T. F. Xi, S. C. Wei. Surf. Coat. Technol. 228 (SUPPL. 1), S2 (2013). Crossref
14. C. Park, S. Kim, H.-E. Kim, T.-S. Jang. Surf. Coat. Technol. 305, 139 (2016). Crossref
15. A. Motallebzadeh, M. B. Yagci, E. Bedir, C. B. Akso, D. Canadin. Metall and Mat Trans A. 49 (6), 1992 (2018). Crossref
16. Y. Cheng, W. Cai, H. T. Li, Y. F. Zheng. J. of Mater. Sci. 41 (15), 4961 (2006). Crossref
17. S. G. Psakhie, S. N. Meisner, A. I. Lotkov, L. L. Meisner, A. V. Tverdokhlebova. J. of Materi Eng and Perform, 23, 2620 (2014). Crossref
18. M. H. Fathi, V. Mortazavi. Dental Research J. 4 (2), 74 (2007).
19. R. Olivares-Navarrete, J. J. Olaya, C. Ramírez, S. E. Rodil. Coatings. 1, 72 (2011). Crossref
20. K. Li, Y. Li, X. Huang, D. Gibson, Y. Zheng, J. Liu, L. Sun, Y. Q. Fu. Appl. Surf. Sci. 414, 63 (2017). Crossref
21. C. Li, Y. F. Zheng, L. C. Zhao. Materials Science and Engineering A. 438 - 440, 504 (2006). Crossref
22. F. Seifried, H. Leiste, R. Schwaiger, S. Ulrich, H. J. Seifert, M. Stueber. Surf. Coat. Technol. 347, 379 (2018). Crossref
23. Handbook of Vacuum Arc Science and Technology (Ed. by R. L. Boxman, P. J. Martin, D. M. Sanders). Park Ridge, NJ, Noyes Publications (1995) 367 p.
24. A. A. Neuman, L. L. Meysner, A. I. Lotkov, S. N. Meysner, V. P. Sergeev, K. P. Redlih. Perspective materials, 1, 51 (2009). (in Russian) [А. А. Нейман, Л. Л. Мейснер, А. И. Локов, С. Н. Мейснер, В. П. Сергеев, К. П. Редлих. Перспективные материалы. 1, 51 (2009).].
25. D. E. Gusev, M. Yu. Kollerov, R. E. Vinogradov. Deformation and Fracture of Materials. 7, 17 (2018). (in Russian) [Д. Е. Гусев, М. Ю. Коллеров, Р. Е. Виноградов. Деформация и разрушение материалов. 7, 17 (2018).]. Crossref
26. K. Otsuka, X. Ren. Progr. Mater. Sci. 5 (50), 511 (2005). Crossref
27. Y. Liu, X. Chen, P. G. McCormick. J. of Mat. Sci. 32, 5979 (1997). Crossref
28. D. E. Gusev, K. S. Senkevich, M. I. Knyazev. Met Sci Heat Treat. 54, 184 (2012). Crossref

Similar papers