Microstructure, mechanical and functional properties of the Ti49.0Ni51.0 alloy with preliminary multiple martensitic transformations

A.A. Churakova, E.I. Iskhakova, E.V. Vorobiev show affiliations and emails
Received 05 September 2023; Accepted 09 January 2024;
Citation: A.A. Churakova, E.I. Iskhakova, E.V. Vorobiev. Microstructure, mechanical and functional properties of the Ti49.0Ni51.0 alloy with preliminary multiple martensitic transformations. Lett. Mater., 2024, 14(1) 15-20
BibTex   https://doi.org/10.48612/letters/2024-1-15-20

Abstract

Change in microhardness depending on the initial microstructure and processing (thermal cycling and annealings)In this work, the influence of the initial microstructure on the mechanical and functional properties of the Ti49.0Ni51.0 alloy is considered in the preliminary thermocycling and subsequent ageing. As a result of the study, different structural states were formed in the Ti49.0Ni51.0 alloy: a coarse-grained state, an ultrafine-grained state formed by equal-channel angular pressing (ECAP) and a nanostructured state formed by ECAP and cold upsetting. Thermal cycling in all investigated states leads to an increase in dislocation density and a decrease in the size of structural elements. In the state after ECAP and cold upsetting, thermocycling and subsequent annealing allowed the formation of a structure with a grain size of about 60 nm. Studies have shown that thermocycling allows the microhardness values to be increased in all investigated states. The mechanical properties of the Ti49.0Ni51.0 alloy are also enhanced by thermal cycling. The highest strength values can be achieved in the nanostructured state by thermal cycling followed by low temperature annealing at 250°C.

References (39)

1. V. G. Pushin, V. V. Kondratiev, V. N. Khachin. Pre-transition phenomena and martensitic transformations. Yekaterinburg, Ural Branch of the Russian Academy of Sciences (1998) 368 p. (in Russian) [В. Г. Пушин. Предпереходные явления и мартенситные превращения. Екатеринбург, УрО РАН (1998) 368 с.].
2. K. Worden. New intellectual materials and designs. Properties and application. Moscow, Technosfera (2006) 224 p. (in Russian) [К. Уорден. Новые интеллектуальные материалы и конструкции. Свойства и применение. Москва, Техносфера (2006) 224 с.].
3. V. E. Gunter, V. I. Itin, L. A. Monasevich. Shape memory effects and their application in medicine. Novosibirsk, Nauka (1992) 742 p. (in Russian) [В. Э. Гюнтер. Эффекты памяти формы и их применение в медицине. Новосибирск, Наука (1992) 742 с.].
4. V. G. Pushin. Nanostructures and phase transformations in TiNi shape memory alloys subjected to severe plastic deformation. Ultrafine grained materials III, TMS. Charlotte, NC, USA (2004).
5. T. Waitz, V. Kazykhanov, H. P. Karnthaler. Acta Materialia. 52 (1), 137 (2004).
6. V. G. Pushin. Annales de Chimie Science des Matériaux. 27, 3 (2002).
7. Yu. P. Mironov, P. G. Erokhin, S. N. Kulkov. Izvestiya vuzov. Fizika. 2, 100 (1997). (in Russian) [Ю. П. Миронов. П. Г. Ерохин, С. Н. Кульков. Известия вузов. Физика. 2, 100 (1997).].
8. Y. Furuya, Y.C.Park. Nondestructive Testing and Evaluation. 8-9, 541 (1992).
9. J. I. Kim, S. Miyazaki. Acta Materialia. 53 (17), 4545 (2005).
10. V. K. Fedyukin. Method of thermocyclic processing of metals. Leningrad, Publishing House of Leningrad State University (1984) 190 p. (in Russian) [В. К. Федюкин. Метод термоциклической обработки металлов. Ленинград, Изд-во ЛГУ (1984) 190 с.].
11. A. A. Baranov. Phase transformations and thermal cycling of metals. Kyiv (1974) 230 p. (in Russian) [А. А. Баранов. Фазовые превращения и термоциклирование металлов. Киев (1974) с. 230.].
12. R. I. Babicheva, I. Z. Sharipov, K. J. Mulyukov. Materials Science Forum. 667-669, 985 (2010).
13. B. Kockar, I. Karaman, J. I. Kim, Y. I. Chumlyakov, J. Sharp, C.-J. (Mike) Yu. Acta Materialia. 56 (14), 3630 (2008).
14. R. Delville, B. Malard, J. Pilch, P. Sittner, D. Schryvers. Acta Materialia. 58 (13), 4503 (2010).
15. X. Wang, S. Kustov, B. Verlinden et al. Shap. Mem. Superelasticity. 1, 231 (2015).
16. A. Ahadi, Q. Sun. Acta Materialia. 76 (1), 186 (2014).
17. M. Peterlechner, T. Waitz, H. P. Karnthaler. Scripta Materialia. 60 (12), 1137 (2009).
18. M. Peterlechner, J. Bokeloh, G. Wilde, T. Waitz. Acta Materialia. 58 (20), 6637 (2010).
19. S. Miyazaki, Y. Kohiyama, K. Otsuka, T. W. Duerig. Materials Science Forum. 56-58, 765 (1990).
20. H. E. Karaca, S. M. Saghaian, G. Ded, H. Tobe, B. Basaran, H. J. Maier, R. D. Noebe, Y. I. Chumlyakov. Acta Materialia. 61 (19), 7422 (2013).
21. S. Miyazaki, T. Imai, Y. Igo, K. Otsuka. Metallurgical Transactions A. 17, 115 (1986).
22. X. Wang, C. Li, B. Verlinden, J. Van Humbeeck. Scripta Materialia. 69 (7), 545 (2013).
23. X. Wang, K. Li, D. Schryvers, B. Verlinden, J. Van Humbeeck. Scripta Materialia. 72-73, 21 (2014).
24. E. P. Ryklina, A. Korotitskiy, I. Khmelevskaya, S. Prokoshkin, K. Polyakova, A. Kolobova, M. Soutorine, A. Chernov. Materials and Design. 136, 174 (2017).
25. E. P. Ryklina, K. A. Polyakova, N. Yu. Tabachkova, N. N. Resnina, S. D. Prokoshkin. Journal of Alloys and Compounds. 764, 626 (2018).
26. S. Liu, Y. Lin, G. Wang, X. Wang. Materials Characterization. 172, 110832 (2021).
27. X. Wang, Z. Pu, Q. Yang, S. Huang, Z. Wang, S. Kustov, J. Van Humbeeck. Scripta Materialia. 163, 57 (2019).
28. H. F. Li, F. L. Nie, Y. F. Zheng, Y. Cheng, S. C. Wei, R. Z. Valiev. Journal of Materials Science & Technology. 35 (10), 2156 (2019).
29. X. Yi, K. Sun, W. Gao, H. Wang, B. Sun, W. Yao, X. Meng, Z. Gao, W. Cai. Intermetallics. 104, 8 (2019).
30. T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, W. Zhang. Prog Mater Sci. 92, 112 (2018).
31. X. Wang, S. Kustov, J. Van Humbeeck. Materials. 11 (9), 1683 (2018).
32. J. M. Walker, C. Haberland, M. T. Andani, H. Karaca. Journal Intell. Mater. Syst. Struct. 27 (19), 2653 (2016).
33. M. Tsaturyants, V. Sheremetyev, S. Dubinskiy, V. Komarov, K. Polyakova, A. Korotitskiy, S. Prokoshkin, E. Borisov, K. Starikov, D. Kaledina, A. Popovich, V. Brailovski. Shape Memory and Superelasticity. 8, 16 (2022).
34. A. Churakova, D. Gunderov, A. Lukyanov, N. Nollmann. Acta Metallurgica Sinica (English Letters). 28, 1230 (2015).
35. A. A. Churakova, D.V. Gunderov, S.V. Dmitriev. Materialwissenschaft und Werkstofftechnik. 49 (6), 769 (2018).
36. A. A. Churakova, D. Gunderov. Metals. 10 (2), 227 (2020).
37. T. Simon, A. Kroger, C. Somsen, A. Dlouhy, G. Eggeler. Acta Materialia. 58 (5), 1850 (2010).
38. S. Belyaev, N. Resnina, A. Sibirev, I. Lomakin. Thermochimica Acta. 582, 46 (2014).
39. N. Resnina, S. Belyaev. Journal of Alloys and Compounds. 486, 304 (2009).

Similar papers

Funding

1. Ministry of Education and Science of the Republic of Bashkortostan - REC-GMU-2022, Agreement No. 1 dated 07/09/2023 (12/12/2022)