An accurate empirical formula for determining the density of heat-resistant nickel alloys

D.A. Tarasov ORCID logo , O.B. Milder ORCID logo , A.G. Tyagunov ORCID logo show affiliations and emails
Received 01 March 2021; Accepted 13 April 2021;
This paper is written in Russian
Citation: D.A. Tarasov, O.B. Milder, A.G. Tyagunov. An accurate empirical formula for determining the density of heat-resistant nickel alloys. Lett. Mater., 2021, 11(2) 192-197
BibTex   https://doi.org/10.22226/2410-3535-2021-2-192-197

Abstract

Median –0.0011, average –0.0010, max. 0.2135, min. –0.1775, standard deviation 0.0705.The density of a substance is one of its main physical characteristics. This is especially true for materials used in aviation, where the mass of each structural element should be minimized as much as possible. When developing new structural materials, for example, heat-resistant nickel alloys, which are widely used in the manufacture of gas turbine engine parts, it is extremely important to have a reliable and accurate method for assessing the density of the material being developed. Until now, no unified method has been proposed for calculating the density of heat-resistant nickel alloys. The paper reviews the available approaches to assessing the density of alloys and proposes a new formula that allows one to calculate the density of an alloy with a high accuracy based on the information on its composition. The proposed approach takes into account the spatial fcc structure of heat-resistant nickel alloys as well as the molar mass and molar volume of the elements that form the alloy. To check the accuracy of the calculations, a database of 69 heat-resistant nickel alloys was collected, containing information on the composition of the alloys and their known density. According to the proposed formula, as well as using some other known approaches, the density for the alloys from the database was calculated. The calculation results showed that the proposed method provided the best accuracy among all considered ones: the standard deviation of the calculated values from the real ones for the entire sample was 0.1 %, the mean values and medians practically coincide. In addition, the calculation errors are normally distributed and have an average value of −0.0001. The existing methods give a minimum error of 1.2 %, thus, the proposed approach improved the accuracy of calculating the density of heat-resistant nickel alloys by about an order of magnitude, which is a significant result both from the point of view of the general scientific approach and from the point of view of engineering practice. Taking into account the results obtained, the proposed formula can be widely used in the development of new and modification of existing heat-resistant nickel alloys.

References (22)

1. O. G. Ospennikova. Aviation Materials and Technologies. 1 (40), 3 (2016). (in Russian) [О. Г. Оспенникова. Авиационные материалы и технологии. 1 (40), 3 (2016).]. Crossref
2. N. V. Petrushin, E. S. Elyutin, A. V. Korolev. Proceedings of the conference Fundamental and Applied Research in the Field of Creation of Cast Heat-Resistant Nickel and Intermetallide Alloys and High-efficiency Technologies for Manufacturing Garment Parts. Moscow (2017) p. 235. (in Russian) [Н. В. Петрушин, Е. С. Елютин, А. В. Королев. Сборник докладов Всероссийской научно-технической конференции Фундаментальные и прикладные исследования в области создания литейных жаропрочных никелевых и интерметаллидных сплавов и высокоэффективных технологий изготовления деталей газотурбинных двигателей. Москва (2017) с. 235.].
3. O. A. Bazyleva, E. G. Arginbaeva, A. V. Shestakov. Proceedings of the conference Fundamental and Applied Research in the Field of Deformable and Casting Intermetallic Alloys Based on Titanium and Nickel. Moscow (2018) p. 28. (in Russian) [О. А. Базылева, Э. Г. Аргинбаева, А. В. Шестакова. Сборник конференции Фундаментальные и прикладные исследования в области деформируемых и литейных интерметаллидных сплавов на основе титана и никеля. Москва (2018) с.28].
4. A. A. Ganeev, V. V. Smirnov, V. I. Nikitin. Metallurgy of Mechanical Engineering. 1, 42 (2020). (in Russian) [А. А. Ганеев, В. В. Смирнов, В. И. Никитин. Металлургия машиностроения. 1, 42 (2020).].
5. A. V. Logunov, Y. N. Shmotin, S. A. Zavodov, I. A. Leshchenko, D. V. Danilov, I. I. Khryashchev, A. M. Mikhaylov, A. E. Semin, M. A. Mikhaylov. Inorg. Mater: Applied Research. 7 (4), 564 (2016). Crossref
6. A. V. Logunov, I. A. Leshchenko, D. V. Danilov, I. I. Khryashchev. Journal of International Scientific Publications. 10, 58 (2016).
7. L. Zhang, Z. Huang, Y. Pan, L. Jiang. Modell. Simul. Mater. Sci. Eng. 27 (6), 065002 (2019). Crossref
8. Y. Jiang, Y.-A. Chien, C.-Y. Chen, T.-F. M. Chang, M. Sone. ECS Meeting Abstracts. MA2020-02, 1457 (2020). Crossref
9. D. E. Hooks, M. McBride, J. Stull, D. R. Johnson, E. Dervishi, R. L. Edwards. ECS Meeting Abstracts. MA2020-01, 1220 (2020). Crossref
10. F. Xiao, K. Mukai, L. Fang, Y. Fu, R.-H. Yang. T. Nonferr. Metal. Soc. 16 (6), 1263 (2006). Crossref
11. A. G. Tyagunov. Bulletin of the South Ural State University. Metallurgy Series. 16 (4), 16 (2016). (in Russian) [А. Г. Тягунов. Вестник Южно-Уральского государственного университета. Серия Металлургия. 16 (4), 16 (2016).].
12. A. G. Tyagunov, E. E. Baryshev, G. V. Tyagunov, K. Yu. Shmakova, V. S. Mushnikov. Melts. 1, 24 (2019). (in Russian) [А. Г. Тягунов, Е. Е. Барышев, Г. В. Тягунов, К. Ю. Шмакова, В. С. Мушников. Расплавы. 1, 24 (2019).].
13. R. C. Reed. The Superalloys: Fundamentals and Applications. Cambridge University Press (2006) 372 p. Crossref
14. Y. Akahama, Y. Fujimoto, T. Terai, T. Fukuda, S. Kawaguchi, N. Hirao, Y. Ohishi, T. Kakeshita. Mater. Trans. 61, 1058 (2020). Crossref
15. B. G. Livshits, V. S. Kraposhin, Ya. L. Linetskiy. Physical Properties of Metals and Alloys. Metallurgiya. Moscow. (1980) 318 p. (in Russian) [Б. Г. Лившиц, В. С. Крапошин, Я. Л. Линецкий. Физические свойства металлов и сплавов. Москва, Металлургия (1980) 318с.].
16. Web page: https://periodictable.com.
17. N. V. Petrushin, I. A. Ignatova, L. A. Dyachkova. Metal Science and Heat Treatment. 9, 25 (1991). (in Russian) [Н. В. Петрушин, И. А. Игнатова, Л. А. Дьячкова. Металловедение и термическая обработка металлов. 9, 25 (1991).].
18. A. V. Logunov, Yu. N. Shmotin, D. V. Danilov. Metal Technology. 7, 3 (2014). (in Russian) [А. В. Логунов, Ю. Н. Шмотин, Д. В. Данилов. Технология Металлов. 7, 3 (2014).].
19. R. Parsons, K. Ono, Z. Li, H. Kishimoto, T. Shoji, A. Kato, M. R. Hill, K. Suzuki. J. All. Compd. 859, 157845 (2020). Crossref
20. A. A. Glotka, S. V. Haiduk. Science and progress to transport. 2 (80), 91 (2019). (in Russian) [А. А. Глотка, С. В. Гайдук. Наука та прогрес транспорту. 2 (80), 91 (2019).].
21. Web page: https://www.handymath.com/calculators.html.
22. F. C. Hull. Met. Prog. 5 (96), 139 (1969).

Similar papers