Influence of the structural state on mechanical properties of tin babbit under upsetting

A.K. Valeeva, I.S. Valeev, A.K. Akhunova


It was shown that rapid cooling leads to the formation in Babbite Sn11%Sb5,5%Cu  a structure with small, intermetallic particles uniformly distributed in the matrix phase. Computer modeling predicts its high wear resistance in the operation of a large-sized sliding bearing.The behavior of a material in extreme regimes of operation in large constructions can be calculated with the use of modern software codes (ANSYS, DEFORM, LS-Dyna). However, they do not have a sufficient basis for the properties of metals and alloys. Therefore, it is necessary to input experimental mechanical properties of a studied material for an adequate description of a process. The present work aims to obtain the mechanical properties of babbit Sn 11 % Sb 5,5 % Cu in different structural states for a use in computer modeling in the software product Deform. As an object of the study, babbit of a chemical composition Cu 5.5 – 6.5 wt. %, Sb 10 – 12 wt. %, Sn — rest was chosen. Two different structural states of the alloy were obtained at different crystallization rates: the first by casting with air cooling and the second by casting with cooling in running water (rapid cooling). The mechanical properties were determined by upsetting tests according to GOST 8817 – 82 standart. An Axiovert-100A microscope with the KSLite image processing program was used for optical metallography. A finite element simulation of a large-sized sliding bearing during operation in a two-dimensional formulation was carried out using the DEFORM-2D software. To evaluate the degree of destruction of the bearing during operation a scalar parameter of damage was determined using the model of metal damage accumulation during monotonic deformation. It is shown that rapid cooling leads to the formation of a structure with small intermetallic particles uniformly distributed in the matrix phase. Such a structure is characterized by enhanced mechanical properties, and computer simulation allows predicting its high wear resistance in a large-sized sliding bearing during operation.

References (10)

A. I. Shpagin. Antifrictional alloys. M.: Metallurgya (1956) 326 p. (in Russian) [А. И. Шпагин. Антифрикционные сплавы. М.: Металлургия (1956) 326 с.]
Wear-resistant materials in chemical machine building. Handbook. Ed. Yu. M. Vinogradov. L.: Mashinostroyenie (1977) 256 p. (in Russian) [Износостойкие материалы в химическом машиностроении. Справочник. Под ред. Ю. М. Виноградова. Л.: Машиностроение (1977) 256 с.]
F. A. Sadykov, N. P. Barykin, I. Sh. Valeev, V. N. Danilenko. Journal of Materials Engineering and Performance. 12, 29 – 36 (2003).
I. M. Lyubarskii, L. S. Palatnik. Metallofizika of friction. M.: Metallurgy (1976) 176 p. (in Russian) [И. М. Любарский, Л. С. Палатник. Металлофизика трения. М.: Металлургия (1976) 176 с.]
F. A. Sadykov, N. P. Barykin, I. Sh. Valeev. Strength of Materials 34, 196 – 199 (2002).
N. P. Barykin, R. F. Fazlyahmetov, A. Kh. Valeeva. Metal science and Heat Treatment. 48, 88 – 91 (2006).
A. Kh. Valeeva, I. Sh. Valeev, R. F. Fazlyakhmetov. Journal of Friction and Wear. 35. № 4, 311 – 315 (2014). DOI: 10.3103 / S1068366614040138
V. S. Kovalenko. Metallurgical reagents. M.: Metallurgya (1981) 120 p. (in Russian) [В. С. Коваленко. Металлографические реактивы. М.: Металлургия (1981) 120 с.]
V. L. Kolmogorov. Plasticity and destruction. M.: Metallurgy (1977) 336 p. (in Russian) [В. Л. Колмогоров Пластичность и разрушение. М.: Металлургия (1977) 336 с.]
A. A. Bogatov. Mechanical properties and metals destruction methods. Ekaterinburg: Ural State Technical University (2002) 329 p. (In Russian) [А. А. Богатов. Механические свойства и методы разрушения металлов: Екатеринбург: ГОУ ВПО УГТУ — УПИ (2002) 329 с.]