Effect of treatment time on mechanical properties of pure copper processed by surface mechanical attrition treatment at cryogenic temperature

J. Zhang, H. Pan, H. Gao, X. Yang, X. Li, X. Liu, B. Shu, C. Li, Y. Gong, X. Zhu show affiliations and emails
Received 01 September 2019; Accepted 09 October 2019;
Citation: J. Zhang, H. Pan, H. Gao, X. Yang, X. Li, X. Liu, B. Shu, C. Li, Y. Gong, X. Zhu. Effect of treatment time on mechanical properties of pure copper processed by surface mechanical attrition treatment at cryogenic temperature. Lett. Mater., 2019, 9(4s) 534-540
BibTex   https://doi.org/10.22226/2410-3535-2019-4-534-540

Abstract

The coarse-grained (CG) materials typically exhibit excellent ductility but poor strength. By contrast, the ultrafine-grained (UFG) or nanocrystalline (NC) materials typically exhibit high strength but poor ductility. However, in this work, the gradient-grained structure materials have superior combination of high strength and good ductility.Bulk pure copper samples were subjected to surface mechanical attrition treatment (SMAT) at cryogenic temperature (liquid nitrogen environment) to obtain a gradient structure (GS) composed of GS layers on both sides and a coarse-grained (CG) layer in the core, with grain sizes varied from hundreds of nanometers to several micrometers. The grain sizes increased but the measured hardness decreased along the depth of the gradient-grained Cu samples. The GS samples exhibited high yield strength (YS) while the uniform elongation (UE) showed only a slight reduction in tensile testing. The high strength and superior UE in the GS samples were believed to be associated with the mechanical incompatibility and interaction between the GS and CG layers. Variation of SMAT processing time could obtain GS layers with different volume fractions and therefore resulting in a different mechanical performance of GS Cu samples. Thus, there was an optimal SMAT processing time associating with the volume fractions of the GS layers, which provided an excellent combination in strength and UE of the GS Cu sample. The loading-unloading-reloading (LUR) tests indicated that higher hetero-deformation induced (HDI) stress could be obtained at a longer SMAT processing time. The HDI stress is caused by hetero deformation among different layers, which increased with increasing SMAT processing time.

References (34)

1. N. Tsuji, Y. Ito, Y. Saito, Y. Minamino. Scripta Materialia. 47, 893 (2002). Crossref
2. Y. Wei, Y. Li, L. Zhu, Y. Liu, X. Lei, G. Wang, Y. Wu, Z. Mi, J. Liu, H. Wang. Nature Communications. 5, 3580 (2014). Crossref
3. M. A. Meyers, P. Y. Chen, Y. M. Lin, Y. Seki. Progress in Materials Science. 53, 1 (2008). Crossref
4. H. D. Espinosa, J. E. Rim, F. Barthelat, M. J. Buehler. Progress in Materials Science. 54, 1059 (2009). Crossref
5. K. Ghavami. Cement & Concrete Composites. 27, 637 (2005). Crossref
6. H. Kou, J. Lu, Y. Li. Advanced Materials. 26, 5518 (2014). Crossref
7. K. Lu. Science. 345, 1455 (2014). Crossref
8. Y. Estrin. Acta Materialia. 61, 782 (2013). Crossref
9. D. A. Hughes, N. Hansen. Acta Materialia. 48, 2985 (2000). Crossref
10. A. P. Zhilyaev, T. G. Langdon. Prog.mater.sci. 53, 893 (2008). Crossref
11. E. Ma, T. Zhu. Materials Today. 20 (6), 323 (2017). Crossref
12. K. Lu, L. Lu, S. Suresh. Science. 324, 349 (2009). Crossref
13. L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu. Science. 304, 422 (2004). Crossref
14. Y. Wang, M. Chen, F. Zhou, E. Ma. Nature. 419, 912 (2002). Crossref
15. Y. H. Zhao, J. F. Bingert, X. Z. Liao, B. Z. Cui, K. Han, A. V. Sergueeva, A. K. Mukherjee, R. Z. Valiev, T. G. Langdon, Y. T. Zhu. Advanced Materials. 18, 2949 (2010). Crossref
16. Y. H. Zhao, X. Z. Liao, S. Cheng, E. Ma, Y. T. Zhu. Advanced Materials. 18, 2280 (2010). Crossref
17. S. S. Chakravarthy, W. A. Curtin. Proc. Natl. Acad. Sci. U. S. A. 108, 15716 (2011). Crossref
18. Y. Zhu, X. Wu. Mater. Res. Lett. 7, 393 (2019).
19. P.L. Orsetti Rossi, M. Sellars. Journal of Materials Science & Technology. 15, 193 (1999). Crossref
20. X. L. Wu, Y. T. Zhu. Mater. Res. Lett. 5, 527 (2017). Crossref
21. X. Huang. Science. 312, 249 (2006). Crossref
22. K. Wang, N. R. Tao, G. Liu, J. Lu, K. Lu. Acta Materialia. 54, 5281 (2006). Crossref
23. T. H. Fang, W. L. Li, N. R. Tao, K. Lu. Science. 331, 1587 (2011). Crossref
24. X. Wu, P. Jiang, L. Chen, F. Yuan, Y. T. Zhu. Proc. Natl. Acad. Sci. U. S. A. 111, 7197 (2014). Crossref
25. X. L. Wu, M. X. Yang, F. P. Yuan, G. L. Wu, Y. J. Wei, X. X. Huang, Y. T. Zhu. Proc. Natl. Acad. Sci. U. S. A. 112, 14501 (2015). Crossref
26. H. J. Yang, S. M. Yin, C. X. Huang, Z. F. Zhang, S. D. Wu, S. X. Li, Y. D. Liu. Advanced Engineering Materials. 10, 955 (2010). Crossref
27. H. J. Gao, Y. G. Huang. Scripta Materialia. 48, 113 (2003). Crossref
28. M. Calcagnotto, D. Ponge, E. Demir, D. Raabe. Materials Science And Engineering a-Structural Materials Properties Microstructure And Processing. 527, 2738 (2010). Crossref
29. H. Gao, Y. Huang, W. D. Nix, W. J. Hutchinson. Journal of the Mechanics & Physics of Solids. 47, 1239 (1999). Crossref
30. M. X. Yang, Y. Pan, F. P. Yuan, Y. T. Zhu, X. L. Wu. Mater. Res. Lett. 4, 145 (2016).
31. X. L. Wu, P. Jiang, L. Chen, J. F. Zhang, F. P. Yuan, Y. T. Zhu. Mater. Res. Lett. 2, 185 (2014). Crossref
32. X. Hu, S. Jin, Z. Hao, Y. Zhe, Y. Jian, Y. Gong, Y. Zhu, S. Gang, X. Zhu. Metallurgical & Materials Transactions A. 48, 1 (2017).
33. K. Park, M. Nishiyama, N. Nakada, T. Tsuchiyama, S. Takaki. Materials Science & Engineering A. 604, 135 (2014). Crossref
34. M. X. Yang, F. P. Yuan, Q. G. Xie, Y. D. Wang, E. Ma, X. L. Wu. Acta Materialia. 109, 213 (2016). Crossref

Similar papers

Funding