Enhancement of structural and mechanical properties of Fe + 0.5 % C steel powder alloy via incorporation of Ni and Co nanoparticles

V.M. Nguyen ORCID logo , G. Karunakaran ORCID logo , T.H. Nguyen ORCID logo , E.A. Kolesnikov, M.I. Alymov, V.V. Levina, Y.V. Konyukhov show affiliations and emails
Received: 10 December 2019; Revised: 02 February 2020; Accepted: 06 February 2020
Citation: V.M. Nguyen , G. Karunakaran, T.H. Nguyen , E.A. Kolesnikov, M.I. Alymov, V.V. Levina, Y.V. Konyukhov. Enhancement of structural and mechanical properties of Fe + 0.5 % C steel powder alloy via incorporation of Ni and Co nanoparticles. Lett. Mater., 2020, 10(2) 174-178
BibTex   https://doi.org/10.22226/2410-3535-2020-2-174-178


•	Nickel and Cobalt nanoparticles improved the mechanical and structural properties of Fe + 0.5% C alloy.
•	The improvement in the properties is due to a reduction in porosity and increased grain quantities.The effect of Ni and Co metal microparticles (MPs) and nanoparticles (NPs) on the structural and mechanical properties of Fe + 0.5 % C steel powder alloy was analyzed. The results revealed that the modification of the alloy by (Ni, Co) NPs can lead to the formation of a fine-grained compact and less porous structure, hence, significantly improve the mechanical properties of the sintered material. MPs modified samples were found to be highly porous when compared to the control. The introduction of 0.5 wt.% Co NPs increased the hardness value of the alloy to 58 HRB, whereas 0.5 wt.% Co MPs reduced the hardness to 47 HRB. The most beneficial effect is observed with 0.5 wt.% Ni NPs addition, wherein the hardness value increased to 63 HRB when compared to 52 HRB of the control sample. The highest flexural strength of 313 MPa was observed for Ni NPs incorporated alloy, whereas the least flexural strength of 156 MPa was noticed for the alloy containing 0.5 wt.% Co MPs. The fracture study confirmed that (Ni, Co) NPs increased the degree of densification, whereas Co MPs additives lead to the formation of large pits and cracks, consequently, to the destruction of material by a brittle inter-granular mechanism. Thus, this study introduces the use of Ni and Co NPs as modifiers in Fe + 0.5 % C alloy via powder metallurgy.

References (27)

1. I. M. Milyaev, M. I. Alymov, D. M. Abashev et al. Letters on Materials. 9 (3), 349 (2019). (in Russian) [И. М. Миляев, М. И. Алымов, Д. М. Абашев и др. Письма о материалах. 9 (3), 349 (2019).]. Crossref
2. A. S. Ustyuhin, A. B. Ankudinov, V. A. Zelenskii, I. M. Milyaev, M. I. Alymov. Letters on Materials. 7 (3), 249 (2017). (in Russian) [А. С. Устюхин, А. Б. Анкудинов, В. А. Зеленский, И. М. Миляев, М. И. Алымов. Письма о материалах. 7 (3), 249 (2017).]. Crossref
3. M. L. Marucci, F. G. Hanejko. Advances in Powder Metallurgy and Particulate Materials. MPIF. 7, 11 (2010).
4. D. Sharma, K. Chandra, P. S. Misra. Mater. Des. 32 (6), 3198 (2011). Crossref
5. H. Arik, M. Turker. Mater. Des. 28 (1), 140 (2007). Crossref
6. V. S. Warke, R. D. Sisson Jr, R. D. Makhlouf. Mater. Sci. Eng. A. 528 (11-12), 3533 (2011). Crossref
7. M. Sha, S. Wu, X. Wang et al. Mater. Sci. Eng. A. 535, 258 (2012). Crossref
8. A. de P. Barbosa, G. S. Bobrovnitchii, A. L. D. Skury et al. Mater. Des. 31 (1), 522 (2010). Crossref
9. M. Li, S. Lu, F. Long. JOM. 67 (5), 922 (2015). Crossref
10. S. S. Rathore, M. M. Salve, V. V. Dabhade. J. Alloy Compd. 649, 988 (2015). Crossref
11. S. Li, Y. Wang, X. Wang. Mater. Sci. Eng. A. 639, 640 (2015). Crossref
12. G. Karunakaran, V. M. Nguyen, Y. Konyukhov et al. Archives of Civil and Mechanical Engineering. 17 (3), 669 (2017). Crossref
13. GOST 20899-75. 01.02.2017, Moscow. (in Russian). [ГОСТ 20899-75. 01.02.2017, Москва].
14. GOST 19440-94. 01.02.2017, Minsk. (in Russian). [ГОСТ 19440-94. 01.02.2017, Минск].
15. GOST 18898-89. 01.02.2017, Moscow. (in Russian). [ГОСТ 18898-89. 01.02.2017, Москва].
16. L.-P. Lapierre-Boire, C. Blais, S. Pelletier. Powder Technol. 299, 156 (2016). Crossref
17. Y. H. Cho, H. W. Kim, W. Kim et al. Materials Today: Proceedings. 2 (10), 4924 (2015). Crossref
18. X. Wang, J. V. Wood. Powder Metall. 38 (1), 59 (1995). Crossref
19. V. M. Nguyen, G. Karunakaran, Yu. Konyukhov et al. J Clust Sci. 28 (4), 2157 (2017). Crossref
20. J. Park, S. Lee, S. Kang et al. Powder Technol. 284, 459 (2015). Crossref
21. M. Srinivas, G. Malakondaiah, P. Rama Rao. Proc. R. Soc. Lond. A. 447, 223 (1994). Crossref
22. M. Aloe, F. Anton. Tabira/IV Forum TecnicoInternacional de fundicion. Spain (2007).
23. G. F. Hancock, G. M. Leak. Metal Science Journal. 1, 33 (1967). Crossref
24. K. Saeidi, L. Kvetkova, F. Lofaj et al. RSC Advances. 5, 20747 (2015). Crossref
25. A. K. Gain, L. Zhang. J Mater Sci: Mater Electron. 27, 3982 (2016). Crossref
26. O. Yu. Elagina. Tekhnologicheskiye metody povysheniya iznosostoykosti detaley mashin. Uchebnoye posobiye. University Book, Logos, Moscow (2009) 485 p. (in Russian) [О. Ю. Елагина. Технологические методы повышения износостойкости деталей машин. Учебное пособие. Университетская книга, Логос, Москва (2009) 485 c.].
27. H. Zhang, L. Zhang, G. Dong et al. Powder Technol. 288, 435 (2016). Crossref

Similar papers


1. Ministry of Education and Science of the Russian Federation - К3-2017-055
2. National Research Foundation of Korea funded by the Ministry of Education - NRF-2019R1I1A1A01062458