Synthesis of Tb2O3 nanoparticles by laser ablation in Ar gas flow

R.N. Maksimov ORCID logo , V.V. Platonov, A.S. Yurovskikh ORCID logo , V.A. Shitov, V.V. Osipov show affiliations and emails
Received 16 May 2022; Accepted 24 July 2022;
Citation: R.N. Maksimov, V.V. Platonov, A.S. Yurovskikh, V.A. Shitov, V.V. Osipov. Synthesis of Tb2O3 nanoparticles by laser ablation in Ar gas flow. Lett. Mater., 2022, 12(3) 231-236
BibTex   https://doi.org/10.22226/2410-3535-2022-3-231-236

Abstract

Terbium oxide nanopowder with an average particle size of 13 nm and a record high content of magnetoactive Tb3+ ions was successfully synthesized for the first time by laser ablation of solid target in Ar gas flowIn this paper, we report on the synthesis of terbium sesquioxide (Tb2O3) nanopowder by laser ablation of a solid target material in Ar gas flow using an ytterbium fiber laser with an average power of 300 W. The as-synthesized nanoparticles featured spherical morphology, an average size of 13 nm and a substantially monoclinic crystal structure, whose symmetry was converted into cubic by heat treatment at 850°C under vacuum. Pressureless densification of powder compact at 1450°C yields 95.6 % of the relative density indicating excellent sinterability of the produced nanoparticles. XPS analysis was used to estimate the ratio between O and Tb concentrations as [O] / [Tb] =1.51, which is close to the Tb2O3 stoichiometry indicating a very low content of detrimental Tb4+ ions. The obtained results suggest that laser ablation in Ar gas flow is a promising technique for synthesizing Tb2O3 nanoparticles suitable for further fabrication of advanced magnetooptical ceramics.

References (29)

1. K. J. Carothers, R. A. Norwood, J. Pyun. Chem. Mater. 34, 2531 (2022). Crossref
2. D. Vojna, O. Slezak, A. Lucianetti, T. Mocek. Appl. Sci. 9, 3160 (2019). Crossref
3. J. Dai, J. Li. Scr. Mater. 155, 78 (2018). Crossref
4. P. Veber, M. Velazquez, G. Gadret, D. Rytz, M. Peltzc, R. Decourta. CrystEngComm. 3, 492 (2015). Crossref
5. A. Ikesue, Y. L. Aung, S. Makikawa, A. Yahagi. Opt. Lett. 42, 4399 (2017). Crossref
6. A. Ikesue, Y. L. Aung, S. Makikawa, A. Yahagi. Materials. 12, 421 (2019). Crossref
7. M. Zinkevich. Prog. Mater. Sci. 52, 597 (2007). Crossref
8. J. Zhang, H. Chen, J. Wang, D. Wang, D. Han, J. Zhang, S. Wang. Scr. Mater. 171, 108 (2019). Crossref
9. S. S. Balabanov, D. A. Permin, E. Ye. Rostokina, S. V. Egorov, A. A. Sorokin, D. D. Kuznetsov. Ceram. Int. 43, 16569 (2017). Crossref
10. J. Zhang, H. Chen, J. Wang, D. Wang, D. Han, J. Zhang, S. Wang. J. Eur. Ceram. Soc. 41, 2818 (2021). Crossref
11. M. Yang, D. Zhou, J. Xu, T. Tian, R. Jia, Z. Wang. J. Eur. Ceram. Soc. 39, 5005 (2019). Crossref
12. B. M. Abu-Zied, A.-R. N. Mohamed, A. M. Asiri. J. Nanosci. Nanotechnol. 15, 4487 (2015). Crossref
13. P. V. Fursikov, M. N. Abdusalyamova, F. A. Makhmudov, E. N. Shairmardanov, I. D. Kovalev, D. Yu. Kovalev, R. B. Morgunov, O. V. Koplak, A. A. Volodin, I. I. Khodos, Y. M. Shulga. J. Alloys Compd. 657, 163 (2016). Crossref
14. F. Kai, L. Bin, C. Hongmei, W. Shaofan, W. Yan, L. Yongxing. J. Synth. Cryst. 50, 80 (2021).
15. H. D. Kurland, J. Grabow, Chr. Stotzel, F. A. Muller. J. Ceram. Sci. Technol. 5, 275 (2014). Crossref
16. V. V. Osipov, V. V. Platonov, V. V. Lisenkov, E. V. Tikhonov, A. V. Podkin. Appl. Phys. A. 124, 3 (2018). Crossref
17. V. V. Osipov, V. V. Platonov, M. A. Uimin, A. V. Podkin. Tech. Phys. 57, 543 (2012). Crossref
18. V. B. Glushkova. Polymorphism of Oxides of the Rare-Earth Elements. Leningrad, Nauka (1967) 133 p. (in Russian) [В. Б. Глушкова. Полиморфизм окислов редкоземельных элементов. Ленинград, Наука (1967) 133 с.].
19. S. Baran, R. Duraj, A. Hoser, B. Penc, A. Szytula. Acta Phys. Pol. A. 123, 98 (2013). Crossref
20. R. T. Tuenge, L. Eyring. J. Solid State Chem. 41, 75 (1982). Crossref
21. H. R. Hoekstra. Inorg. Chem. 5, 754 (1966). Crossref
22. D. A. Porter, K. E. Easterling, M. Y. Sherif. Phase transformation in metals and alloys. 3rd edn. Boca Raton, CRC Press (2009) 521 p.
23. T. Ishikawa, C. Koyama, H. Oda, H. Saruwatari, P.-F. Paradis. Int. J. Microgravity Sci. Appl. 39, 390101 (2022). Crossref
24. S. S. Balabanov, D. A. Permin, E. Ye. Rostokina, S. V. Egorov, A. A. Sorokin. J. Adv. Ceram. 7, 362 (2018). Crossref
25. F. Mercier, C. Alliot, L. Bion, N. Thromat, P. Toulhoat. J. Electron Spectrosc. Relat. Phenom. 150, 21 (2006). Crossref
26. S. V. Belaya, V. V. Bakovets, I. P. Asanov, I. V. Korolkov, V. S. Sulyaeva. Chem. Vap. Depos. 21, 150 (2015). Crossref
27. Handbook of X-ray Photoelectron Spectroscopy (ed. by J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben). Minnesora, Eden Prairie (1992) 261 p.
28. I. Snetkov, A. Starobor, O. Palashov, S. Balabanov, D. Permin, E. Rostokina. Opt. Mater. 120, 111466 (2021). Crossref
29. M. Velazquez, S. Pechev, M. Duttine, A. Wattiaux, C. Labrugere, Ph. Veber, S. Buffiere, D. Denux. J. Solid State Chem. 264, 91 (2018). Crossref

Similar papers

Funding

1. Russian Science Foundation - 22-23-00658