Morphology and electrochemical properties of composites based on multi-wall carbon nanotubes filled with gold and manganese oxides nanoparticles

Y.A. Zakharov, N.V. Ivanova ORCID logo , G.Y. Simenyuk, M.V. Lomakin, T.O. Sergina, E.V. Kachina, V.G. Dodonov ORCID logo show affiliations and emails
Received: 17 October 2023; Revised: 21 November 2023; Accepted: 03 December 2023
Citation: Y.A. Zakharov, N.V. Ivanova, G.Y. Simenyuk, M.V. Lomakin, T.O. Sergina, E.V. Kachina, V.G. Dodonov. Morphology and electrochemical properties of composites based on multi-wall carbon nanotubes filled with gold and manganese oxides nanoparticles. Lett. Mater., 2023, 13(4s) 481-487
BibTex   https://doi.org/10.22226/2410-3535-2023-4-481-487

Abstract

Morphological (SAXS) and electrochemical (CV, EIS) properties of nanostructured composites Au/MWCNT and MnxOy/MWCNT prepared by means of multiple layer-by-layer auto-reduction (HAuCl4 or KMnO4) were investigated, nanoparticles of fillers are formed in both channels and on external surface of the MWCNT. The maximum effect of increase in electric capacitance of the composites with 4 wt % Au and 5 wt.% MnxOy with respect to capacitance of MWCNT is 1.2 and 2.9, respectively, in the region of the low scan rates.The morphology and electrochemical characteristics of multi-wall carbon nanotubes (MWCNT)-based nanostructured composites filled with Au or MnxOy nanoparticles have been studied. It is determined that during the both nanocomposites types preparation by the reduction of aqueous HAuCl4, KMnO4 solutions, fillers nanoparticles formed in MWCNTs channels or on its external surface. The maximum electric capacitances of the nanostructured composites with optimal filler content are in 1.3 times (for the 4 wt.%Au composites) and 2.9 times (for the 5 wt.% MnxOy composites) more than initial MWCNT capacitance. The nature of anodic and cathodic peaks determining the pseudocapacitance on cyclic voltammetry curves for the composites filled with MnxOy and corresponding to transformations in Mn oxides has been defined. Electrochemical impedance spectra for the nanocomposites reflect the occurrence of these reactions, as well as Red-Ox processes with the participation of functional groups on the C-matrixes surface, in addition to the formation of an electric double layer. Electrochemical properties of MWCNTs and nanocomposite electrodes are described with proposed equivalent scheme with the satisfactory accuracy in the frequency range of 0.1 Hz – 100 kHz.

References (27)

1. Z. Arfeen, M. Abdullah, R. Hassan, B. Othman, A. Siddique, A. Rehman, U. Sheikh. Int. Trans. Electr. Energ. Syst. 30, 12422 (2020). Crossref
2. R. Sharma, H. Kumar, G. Kumar, S. Sharma, R. Aneja, A. Sharma, R. Kumar, P. Kumar. Chem. Eng. J. 468, 143706 (2023). Crossref
3. J. Wang, Y. Jiang, B. Qin. Energy Reports. 8, 15617 (2022). Crossref
4. T. Balezentis, D. Streimikiene, I. Mikalauskas, Z. Shen. Energy. 214, 119081 (2021). Crossref
5. S. Yun, Y. Zhang, Q. Xu, J. Liu, Y. Qin. Nano Energy. 60, 600 (2019). Crossref
6. M. Ren, J. Di, W. Chen. Batteries & Supercaps. 4, 1279 (2021). Crossref
7. K. Fan, X. Lei, J. Zhang, T. Yu, H. Chen, J. Liu. Energy Technol. 11, 2201281 (2023). Crossref
8. N. Díez, M. Sevilla, A. Fombona-Pascual, A. Fuertes. Batteries & Supercaps. 5, 202100169 (2022). Crossref
9. V. Hiremath, A. Lim, J. Seo. Int. J. Energy. Res. 45, 4385 (2021). Crossref
10. S. Achra, X. Wu, V. Trepalin, T. Nuytten, V. Afanas’ev, S. Brems, B. Soree, Z. Tokei, M. Heyns, I. Asselberghs. Carbon. 183, 999 (2021). Crossref
11. W. Li, Q. Song, M. Li, Y. Yuan, J. Zhang, N. Wang, Z. Yang, J. Huang, J. Lu, X. F. Li. Small Methods. 5, 2100444 (2021). Crossref
12. Y. Zakharov, G. Simenyuk, T. Trosnyanskaya, V. Pugachev, D. Russakov, T. Larichev. Chem. Sustain. Develop. 30, 487 (2022). Crossref
13. G. Simenyuk, Y. Zakharov, N. Pavelko, V. Dodonov, V. Pugachev, A. Puzynin, T. Manina, C. Barnakov, Z. Ismagilov. Catal. Today. 249, 220 (2015). Crossref
14. Y. Zakharov, G. Simenyuk, E. Kachina, V. Pugachev, V. Dodonov, D. Yakubik, T. Trosnyanskaya, Z. Ismagilov. Energy Technol. 9, 2100449 (2021). Crossref
15. Y. Zakharov, G. Simenyuk, E. Kachina, Y. Dudnikova, V. Dodonov, Z. Ismagilov. Inorg Mat. 57, 487 (2021). Crossref
16. Y. Zakharov, G. Simenyuk, T. Sergina, N. Ivanova, T. Larichev, I. Zykov, Y. Dudnikova. Lett. Mater. 13 (1), 20 (2023). Crossref
17. Y. Zakharov, E. Kachina, N. Fedorova, T. Larichev, G. Simenyuk, V. Pugachev, V. Dodonov, E. Zaytseva, D. Yakubik, E. Mikhailova. Chem. Sustain. Develop. 27, 590 (2019). Crossref
18. G. Simenyuk, Y. Zakharov, E. Kachina, V. Pugachev, V. Dodonov, A. Gainutdinov, E. Pomesyachnaya. Chem. Sustain. Develop. 27, 633 (2019). Crossref
19. E. Anitas. Small-Angle Scattering (Neutrons, X-Rays, Light) from Complex Systems. Fractal and Multifractal Models for Interpretation of Experimental Data. Switzerland, Cham, Springer (2019). Crossref
20. V. Dodonov, Y. Zakharov, V. Pugachev, O. Vasiljeva. Inorg. Mater. Appl. Res. 7, 804 (2016). Crossref
21. M. Guo, R. Deng, C. Wang, Q. Zhang. J. Energy Chem. 78, 537 (2023). Crossref
22. B. Messaoudi, S. Joiret, M. Keddam, H. Takenouti. Electrochim. Acta. 46, 2487 (2001). Crossref
23. S. Cordoba, R. Carbonio, M. Teijelo, V. Macagno. Electrochim. Acta. 31, 1321 (1986). Crossref
24. Y. Lurie. Handbook of Analytical Chemistry. Moscow, Alliance (2007) 447 p. (in Russian) [Ю. Лурье. Справочник по аналитической химии. Москва, Альянс (2007) 447 с.].
25. R. Nekouei, S. Mofarah, S. Maroufi, I. Tudela, V. Sahajwalla. J. Energy Stor. 56, 106137 (2022). Crossref
26. Z. Zhao, Y. Zou, P. Liu, Z. Lai, L. Wen, Y. Jin. Electrochim. Acta. 418, 140350 (2022). Crossref
27. B. Choudhury, V. Moholkar. Ultrason. Sonochem. 82, 105896 (2022). Crossref

Similar papers

Funding