Analysis of the size distribution of binary Cu-Au nanoparticles during synthesis from a gaseous medium

Y.Y. Gafner, S.L. Gafner, Z.V. Golovenko show affiliations and emails
Received 18 June 2019; Accepted 17 September 2019;
This paper is written in Russian
Citation: Y.Y. Gafner, S.L. Gafner, Z.V. Golovenko. Analysis of the size distribution of binary Cu-Au nanoparticles during synthesis from a gaseous medium. Lett. Mater., 2020, 10(1) 33-37
BibTex   https://doi.org/10.22226/2410-3535-2020-1-33-37

Abstract

The paper presents the results of computer simulation using the molecular dynamics method of synthesizing binary Cu-Au nanoclusters by condensation from a gaseous phase. For the analysis, we selected the initial configurations of different chemical composition Cu3Au, Cu-Au, Cu90Au10, Cu60Au40 which were cooled with liquid nitrogen in the condensation process. Accord-ing to the simulation results, a relationship was found between the number of clusters formed at the first stage of synthesis and the percentage of gold atoms in the primary gaseous medium.The paper presents the results of molecular dynamics computer simulation studies on the synthesis of binary Cu-Au nanoclusters by condensation from the gaseous phase. To calculate the interatomic interaction forces, the modified TB-SMA potential with a fixed cutoff radius was used. As the initial structure, a configuration containing a total of 91 124 Cu and Au atoms distributed in a cubic lattice with a parameter of 30 ∙ аВ, where аВ is the Bohr radius, was chosen and periodic boundary conditions were used. For the analysis, we selected the initial configurations of different chemical composition Cu3Au, Cu-Au, Cu90Au10, Cu60Au40, which were cooled in the condensation process to 77 K. As a result of numerical experiments, condensation of liquid droplets from hot high-density gas was observed, which then crystallized into primary particles of nanometer size and then merged into larger formations. According to the simulation results, a relationship was found between the number of clusters formed at the first stage of synthesis and the percentage of gold atoms in the primary gaseous medium. It was concluded that this fact was a consequence of different binding energies between copper and gold atoms, which led to different melting points of these clusters. Despite the random nature of further agglomeration processes, this trend still persists at lower temperatures. Therefore, using different concentrations of copper and gold atoms, it is possible, in principle, to control the formation of Cu-Au binary clusters from the gas phase with some predetermined chemical composition and size.

References (23)

1. R. Ferrando, J. Jellinek, R. L. Johnston. Chem. Rev. 108, 845 (2008). Crossref
2. D. Cheng, S. Huang, W. Wang. Phys. Rev. B. 74, 064117 (2006). Crossref
3. M. Okada, Y. Tsuda, K. Oka, K. Kojima, W. A. Diño, A. Yoshigoe, H. Kasai. Scientific Reports. 6, 31101 (2016). Crossref
4. D. T. Tran, I. P. Jones, J. A. Preece, R. L. Johnston, C. R. van den Brom. J Nanopart Research. 13, 4229 (2011). Crossref
5. G.-Sh. Wang, E. K. Delczeg-Czirjak, Q.-M. Hu, K. Kokko, B. Johansson, L. Vitos. J Physics: Condensed Matter. 25, 085401 (2013). Crossref
6. F. U. Renner, A. Stierle, H. Dosch, D. M. Kolb, T. L. Lee, J. Zegenhagen. Phys. Rev. B. 77, 235433 (2008). Crossref
7. L. R. Owen, H. Y. Playford, H. J. Stone, M. G. Tucker. Acta Materialia. 125, 15 (2017). Crossref
8. N. Artrith, A. M. Kolpak. Nano Lett. 14, 2670 (2014). Crossref
9. R. He, Y.-C. Wang, X. Wang, Z. Wang, G. Liu, W. Zhou, L. Wen, Q. Li, X. Wang, X. Chen, J. Zeng, J. G. Hou. Nature Communications. 5, 4327 (2014). Crossref
10. H. Prunier, J. Nelayah, Ch. Ricolleau, G. Wang, S. Nowak, A.-F. Lamic-Humblot, D. Alloyeau. Phys. Chem. Chem. Phys. 17, 28339 (2015). Crossref
11. A. Wilson, R. Bernard, A. Vlad, Y. Borensztein, A. Coati, B. Croset, Y. Garreau, G. Prévot. Phys. Rev. B. 90, 075416 (2014). Crossref
12. B. Pauwels, G. Van Tendeloo, E. Zhurkin, M. Hou, G. Verschoren, L. Theil Kuhn, W. Bouwen, P. Lievens. Phys. Rev. B. 63, 165406 (2001). Crossref
13. S. L. Gafner, Yu. Ya. Gafner. Journal of Experimental and Theoretical Physics. 134, 831 (2008). (in Russian) [С. Л. Гафнер, Ю. Я. Гафнер. ЖЭТФ. 134, 831 (2008).].
14. I. V. Chepkasov, Yu. Ya. Gafner. Fundamental'nye Problemy Sovremennogo Materialovedenia. 9, 353 (2012). (in Russian) [И. В. Чепкасов, Ю. Я. Гафнер. Фундаментальные проблемы современного материаловедения. 9, 353 (2012).].
15. H. C. Andersеn. J. Phys. Chem. 72, 2384 (1980). Crossref
16. T. Pang. An introduction to computational physics. University Press, Cambridge (2006) 385 р. Crossref
17. F. Cleri, V. Rosato. Phys. Rev. B. 48, 22 (1993). Crossref
18. I. V. Chepkasov, Yu. Ya. Gafner, S. L. Gafner. Journal of Aerosol Science. 91, 33 (2016). Crossref
19. I. V. Chepkasov, Yu. Ya. Gafner, S. L. Gafner. Phase Transitions. 90, 590 (2017). Crossref
20. S. L. Gafner, L. V. Redel, Yu. Ya. Gafner. Journal of Experimental and Theoretical Physics. 135, 899 (2009). (in Russian) [С. Л. Гафнер, Л. В. Редель, Ю. Я. Гафнер. ЖЭТФ. 135, 899 (2009).].
21. Yu. Ya. Gafner, Zh. V. Golovenko, S. L. Gafner. Journal of Experimental and Theoretical Physics. 143, 288 (2013). (in Russian) [Ю. Я. Гафнер, Ж. В. Головенько, С. Л. Гафнер. ЖЭТФ. 143, 288 (2013).]. Crossref
22. Y. Gafner, S. Gafner, L. Redel, I. Zamulin. Journal of Nanoparticle Research. 20, 51 (2018). Crossref
23. O. Bauer, C. H. Schmitz, J. Ikonomov, M. Willenbockel, S. Soubatch, F. S. Tautz, M. Sokolowski. Phys. Rev. B. 93, 235429 (2016). Crossref

Similar papers

Funding

1. Russian Foundation for Basic Research - #18-42-190001
2. Russian Foundation for Basic Research - #19-48-190002