Impedance spectroscopy of Bi1.6Mg0.24Cu0.56Ta1.6O7.2

N.A. Zhuk, N.A. Sekushin, B.A. Makeev ORCID logo show affiliations and emails
Received 31 August 2020; Accepted 14 October 2020;
This paper is written in Russian
Citation: N.A. Zhuk, N.A. Sekushin, B.A. Makeev. Impedance spectroscopy of Bi1.6Mg0.24Cu0.56Ta1.6O7.2. Lett. Mater., 2021, 11(1) 11-16


The sample have wide impedance-spectra, demonstrating three relaxation processes separated by frequency. An equivalent scheme has been proposed and its parameters have been calculated, satisfactorily describing the electrical characteristics of the preparation.Compounds with pyrochlore structure attract a persistent interest of researchers due to their wide range of practically useful characteristics such as semiconductor, photocatalytic, dielectric and piezoelectric properties. Of a particular interest are triple pyrochlores, the characteristic feature of which is the placement of metal cations M on two non-equivalent cationic positions A and B in the structure of pyrochlore A2B2O7. Such compounds include complex bismuth-containing pyrochlores, most of which exhibit excellent dielectric properties — low dielectric loss tangent and dielectric permeability. In the presented work, results of impedance-spectroscopy studies of electric properties of copper containing bismuth-magnesium tantalum Bi1.6Mg0.24Cu0.56Ta1.6O7.2 with pyrochlore structure are reported. Copper-containing solid solutions of bismuth-magnesium tantalum with pyrochlore structure were synthesized by solid phase method. The samples are characterized by a low-porous microstructure. The parameter of the unit cell was 10.5341 Å. Studies by impedance-spectroscopy in wide temperature (25 – 450°С) and frequency (10 Hz – 1 МHz) intervals have shown that the samples have wide impedance-spectra, demonstrating three relaxation processes with distinct frequencies. An equivalent scheme has been proposed and its parameters have been calculated, which satisfactorily describe the electrical characteristics of the material. As a result of the performed modeling of the electrical properties of material, it has been established that the observed processes are related to electronic and ionomigration polarization as well as electrode process. The sample Bi1.6Mg0.24Cu0.56Ta1.6O7.2 shows ionic conductivity even at room temperature. The local extremum of electrical parameters at 200°С may indicate a decrease in the homogeneity of the medium.

References (21)

1. S. Murugesan, M. N. Huda, Y. Yan, M. M. Al-Jassim, V. Subramanian. J. Phys. Chem. C. 114, 10598 (2010). Crossref
2. D. P. Cann, C. A. Randall, T. R. Shrout. Sol. St. Commun. 100, 529 (1996). Crossref
3. M. A. Subramanian, G. Aravamudan, G. V. SubbaRao. Prog. Sol. St. Chem. 15, 55 (1983). Crossref
4. J. Pandey, V. Shrivastava, R. Nagarajan. Inorg. Chem. 57, 13667 (2018). Crossref
5. S. Yu, L. Li, H. Zheng. J. Alloys Comp. 699, 68 (2017). Crossref
6. M. Valant, G. S. Babu, M. Vrcon, T. Kolodiazhnyi, A.-K. Axelsson. J. Am. Ceram. Soc. 95, 644 (2011). Crossref
7. M. W. Lufaso, T. A. Vanderah, I. M. Pazos, I. Levin, R. S. Roth, J. C. Nino, V. Provenzano, P. K. Schenck. J. Sol. St. Chem. 179, 3900 (2006). Crossref
8. T. A. Vanderah, T. Siegrist, M. W. Lufaso, M. C. Yeager, R. S. Roth, J. C. Nino, S. Yates. Eur. J. Inorgan. Chem. 2006, 4908 (2006). Crossref
9. R. A. McCauley. J. Appl. Phys. 51, 290 (1980). Crossref
10. C. C. Khaw, K. B. Tan, C. K. Lee, A. R. West. J. Eur. Ceram. Soc. 32, 671 (2012). Crossref
11. Y. Zhang, Z. Zhang, X. Zhu, Z. Liu, Y. Li, T. Al-Kassab. Appl. Phys. A. 115, 661 (2013). Crossref
12. H.-J. Youn, T. Sogabe, C. A. Randall, T. R. Shrout, M. T. Lanagan. J. Am. Ceram. Soc. 84, 2557 (2001). Crossref
13. P. Y. Tan, K. B. Tan, C. C. Khaw, Z. Zainal, S. K. Chen, M. P. Chon. Ceram. Intern. 38, 5401 (2012). Crossref
14. M. P. Chon, K. B. Tan, C. C. Khaw, Z. Zainal, Y. H. Taufiq-Yap, S. K. Chen, P. Y. Tan. J. Alloys Comp. 675, 116 (2016). Crossref
15. L. G. Akselrud, Yu. N. Grin, P. Yu. Zavalii, V. K. Pecharski, V. S. Fundamentski. Twelfth European Crystallogr. Meeting. Collected Abstracts. Moscow (1989) p. 155.
16. R. D. Shannon. Acta Crystallogr. А. 32, 751 (1976). Crossref
17. E. Barsoukov, J. R. Macdonald. Impedance spectroscopy: theory, experiment and application. Wiley, Interscience (2005) 606 p. Crossref
18. A. Lasia. Electrochemical impedance spectroscopy and its applications. New York, Springer Science+Business Media (2014) 369 p. Crossref
19. N. A. Sekushin. Proceedings of the Komi Science Center of the Russian Academy of Sciences. 1, 127 (2019).
20. N. A. Zhuk, M. G. Krzhizhanovskaya, V. A. Belyy, V. V. Kharton, A. I. Chichineva. Chem. Mater. 32, 5493 (2020). Crossref
21. N. A. Zhuk, M. G. Krzhizhanovskaya, V. A. Belyy, N. A. Sekushin, A. I. Chichineva. Scripta Mater. 173, 6 (2019). Crossref

Similar papers