Structue and strength of fine-grain copper after cryorolling and single electrо-pulsing of different capacity

M.V. Markushev, R.R. Ilyasov, S.V. Krymskiy, I.S. Valeev ORCID logo , O.S. Sitdikov show affiliations and emails
Received 29 October 2021; Accepted 12 November 2021;
This paper is written in Russian
Citation: M.V. Markushev, R.R. Ilyasov, S.V. Krymskiy, I.S. Valeev, O.S. Sitdikov. Structue and strength of fine-grain copper after cryorolling and single electrо-pulsing of different capacity. Lett. Mater., 2021, 11(4) 491-496
BibTex   https://doi.org/10.22226/2410-3535-2021-4-491-496

Abstract

It was found that the electric pulse treatment of cryorolled cooper leads to the development of recovery processes and continuous static recrystallization, provides a transition from in-situ recrystallization to grain growth, which leads to a sharp decrease in hardness.The effect of a treatment combining isothermal cryogenic rolling and single electro-pulsing on the structure and hardness of M1 grade copper with an initial grain size of 10 –15 μm was investigated. Copper was deformed at liquid nitrogen temperature by multi-pass rolling with a total reduction of 90 %. Subsequent electro-pulse treatment (EPT) was carried out in the interval of integral current densities (Kj) from 3.5 ×104 to 8.1×104 A2 s / mm4. Nearly two-fold strengthening of Cu under rolling was found due to the formation of a heavily deformed (sub)grain structure with a crystallite size of the order of 1 μm and a fraction of high-angle boundaries of about 30 %. With further EPT with an energy of 3.5 ×104 A2s / mm4, the processes of recovery predominantly occur, resulting in slight softening with a simultaneous strong decrease in micro-distortions of the crystal lattice and dislocation densities. Processing with higher energies resulted in a sharp drop in the hardness of Cu owing to an activation of in-situ continuous static recrystallization, forming regions of new fine defect-free grains, whose fraction increased with Kj, and intensified the formation of annealing twins. As a result of EPT with Kj in the range of 5×104 – 7×104 A2s / mm4, a uniform fine-grained structure with a grain size of near 2 μm and a fraction of high-angle boundaries of about 90 %, a third part of which were twins of Σ3, was obtained. With a further increase in pulsing energy to 8.1×104 A2s / mm4, normal grain growth to 4 μm with minor changes in the angular parameters of the structure were observed. The nature of structural and mechanical behavior of copper is discussed. A conclusion is made on the viability of the use of combination of cryogenic rolling and EPT to manufacture ultrafine- and fine-grain sheets of different strength out of copper.

References (19)

1. ГОСТ 21957-76. Межгосударственный стандарт. Техника криогенная. Термины и определения. Москва, Стандартинформ (2005) 7 с.
2. Y. Huang, P. B. Prangnell. Acta Mater. 56, 1619 (2008). Crossref
3. S. V. Krymskiy, E. V. Avtokratova, O. S. Sitdikov, A. V. Mikhaylovskaya, M. V. Markushev. Physics of Metals and Metallography. 116 (7), 676 (2015). Crossref
4. R. R. Ilyasov, E. V. Avtokratova, S. V. Krymskiy, O. S. Sitdikov, M. V. Markushev. IOP Conf. Ser.: Mater. Sci. Eng. 447, 012047 (2018). Crossref
5. D. Magalhaes, A. Kliauga, M. Ferrante, V. Sordi. J. Mater. Sci. 52, 7466 (2017). Crossref
6. J. Shi, L. Hou, J. Zuo, L. Zhuang, J. Zhang. Materials Science & Engineering A. 701, 274 (2017). Crossref
7. L. Voronova, M. Degtyarev, T. Chashchukhina, T. Gapontseva, V. Pilyugin. Lett. Mater. 8 (4), 424 (2018). Crossref
8. T. Konkova, S. Mironov, A. Korznikov, S. L. Semiatin. Acta Mater. 58, 5262 (2010). Crossref
9. V. S. Sarma, J. Wang, W. W. Jian, A. Kauffmann, H. Conrad, J. Freudenberger, Y. T. Zhu. Mater Sci Eng A. 527, 7624 (2010). Crossref
10. T. Konkova, I. Valeev, S. Mironov, A. Korznikov, G. Korznikova, M. M. Myshlyaev, S. L. Semiatin. J. All. Comp. 659, 184 (2016). Crossref
11. T. Konkova, I. Valeev, S. Mironov, A. Korznikov, M. M. Myshlyaev, S. L. Semiatin. J. Mater. Res. 29 (22), 2727 (2014). Crossref
12. I. Sh. Valeev, A. Kh. Valeeva, R. R. Ilyasov, O. Sh. Sitdikov, M. V. Markushev. Lett. Mater. 9 (4), 447 (2019). Crossref
13. E. V. Avtokratova, R. R. Ilyasov, I. S. Valeev, O. S. Sitdikov, M. V. Markushev. Lett. Mater. 1 (4), 194 (2011). (in Russian) [Е. В. Автократова, Р. Р. Ильясов, И. Ш. Валеев, О. Ш. Ситдиков, М. В. Маркушев. Письма о материалах. 1 (4), 194 (2011).]. Crossref
14. R. R. Ilyasov, A. Kh. Valeeva, I. Sh. Valeev, O. Sh. Sitdikov, M. V. Markushev. IOP Conf. Series: Materials Science and Engineering. IOP Publishing. 1008, 012006 (2020). Crossref
15. I. S. Valeev, A. K. Valeeva, R. R. Ilyasov, E. V. Avtokratova, S. V. Krymskiy, O. S. Sitdikov, M. V. Markushev. Lett. Mater. 11 (3), 351 (2021). (in Russian) [И. Ш. Валеев, А. Х. Валеева ORCID logo, Р. Р. Ильясов, Е. В. Автократова, С. В. Крымский, О. Ш. Ситдиков, М. В. Маркушев. Письма о материалах. 11 (3), 351 (2021).]. Crossref
16. S. V. Dobatkin, G. A. Salishchev, A. A. Kuznetsov, T. N. Kon’kova. Mater. Sci. Forum. 558 - 559, 189 (2007). Crossref
17. Y. Sheng, Y. Hua, X. Wang, X. Zhao, L. Chen, H. Zhou, J. Wang, C. C. Berndt, W. Li. Materials. 11, 185 (2018). Crossref
18. F. J. Humphreys, M. Hatherly. Recrystallization and Related Annealing Phenomena. Elsevier (2004) 658 p. Crossref
19. S. S. Gorelik, S. V. Dobatkin, L. M. Kaputkina Recristallizatsiya metallov i splavov. Moscow, MISIS (2005) 432 p. (in Russian) [С. С. Горелик, С. В. Добаткин, Л. М. Капуткина Рекристаллизация металлов и сплавов. Москва, МИСИС (2005) 432 с.].

Similar papers

Funding