Effect of increasing nickel and molybdenum content in austenitic steel on thermal deformation conditions for achieving the peak strain

A.S. Tsvetkov ORCID logo , I.V. Teplukhina, A.V. Kosulnikova show affiliations and emails
Received 10 February 2021; Accepted 10 March 2021;
This paper is written in Russian
Citation: A.S. Tsvetkov, I.V. Teplukhina, A.V. Kosulnikova. Effect of increasing nickel and molybdenum content in austenitic steel on thermal deformation conditions for achieving the peak strain. Lett. Mater., 2021, 11(2) 170-174
BibTex   https://doi.org/10.22226/2410-3535-2021-2-170-174

Abstract

Content increasing of nickel up to 20-25 % and molybdenum alloying, leads to a decrease of the peak strain values level during forging in the temperature range 900 - 1200 ° С at the 0,1 s-1 deformation rateObtaining the required grain size in steel forgings with austenitic metal structure is a problem, especially for the forged thick-walled blanks made by forging on hydraulic presses. For such steels, there is no possibility of grain refinement during heat treatment like for steels of the bainitic and martensitic classes which undergo polymorphic transformation. In this case, refinement to the required grain size is possible only at the stage of hot plastic deformation as a result of recrystallization. Formation of required grain size happens in the process of forging and this grain size is one of the control parameters when blanks acceptance is carried out. The rate of nucleation of new grains increases sharply during dynamic recrystallization at the peak strain (ер) and depends on temperature, deformation rate, initial grain size and chemical composition. The article presents the results of measurements of ер and peak stress (σр) in austenitic steels with a nickel content of ~10, 20, 25 % and a molybdenum content of ~0.01, 2.5 % under thermodeformation conditions typical for forging large-sized blanks on a hydraulic press. It is shown that an increase in the nickel content up to 25 % in combination with alloying with molybdenum, in the temperature range 900 –1200°C, has the most significant effect on the level of ер and σр values during forging at the 10−1 s−1 deformation rate. At deformation rates of 10−2 and 10−3 s−1, the values of ер and σр of the studied steel grades are practically the same.

References (12)

1. G. P. Kаrzov, B. Z. Margolin, I. V. Teplukhina et al. Atomic energy. 1 (121), 25 (2016). (in Russian) [Г. П. Карзов, Б. З. Марголин, И. В. Теплухина и др. Атомная энергия. 1 (121), 25 (2016).].
2. I. P. Kursevich, G. P. Kаrzov, B. Z. Margolin et al. Problems of material science. 3 (71), 146 (2012). (in Russian) [И. П. Курсевич, Г. П. Карзов, Б. З. Марголин и др. Вопросы материаловедения. 3 (71), 146 (2012).].
3. V. M. Makhin, V. I. Tsofin, V. M. Komolov et al. Nuclear science and technology issues. 25, 135 (2009). (in Russian) [В. М. Махин, В. И. Цофин, В. М. Комолов и др. Вопросы атомной науки и техники. 25, 135 (2009).].
4. G. P. Karzov, B. Z. Margolin. Rosenergoatom. 2, 8 (2015). (in Russian) [Г. П. Карзов, Б. З. Марголин. Росэнергоатом. 2, 8 (2015).].
5. V. А. Piminov, V. V. Evdokimenko. Rosenergoatom. 2, 16 (2015). (in Russian) [В. А. Пиминов, В. В. Евдокименко. Росэнергоатом. 2, 16 (2015).].
6. V. S. Neustroev, F. A. Garner. Journal of nuclear materials. 386 - 388, 157 (2009). Crossref
7. I. V. Teplukhina, A. S. Tsvetkov, A. V. Kosulnikova. Letters on Materials. 10 (2), 179 (2020). (in Russian) [И. В. Теплухина, А. С. Цветков, А. В. Косульникова. Письма о материалах. 10 (2), 179 (2020).]. Crossref
8. A. S. Tsvetkov, T. V. Knyazyuk, I. V. Teplukhina et al. Metallurgy of mechanical engineering. 5, 9 (2020). (in Russian) [А. С. Цветков, Т. В. Князюк, И. В. Теплухина и др. Металлургия машиностроения. 5, 9 (2020).].
9. A. K. Onishenko. Forging and stamping production. Metal forming. 4, 9 (2009). (in Russian) [А. К. Онищенко. Кузнечно-штамповочное производство. Обработка металлов давлением. 4, 9 (2009).].
10. M. V. Dobrynina, G. N. Filimonov, V. N. Pavlov. Problems of material science. 3 (67), 19 (2011). (in Russian) [М. В. Добрынина, Г. Н. Филимонов, В. Н. Павлов. Вопросы материаловедения. 3 (67), 19 (2011).].
11. A. Yu. Borisenko. Fundamental and applied problems of ferrous metallurgy. 28, 247 (2014). (in Russian) [А. Ю. Борисенко. Фундаментальные и прикладные проблемы черной металлургии. 28, 247 (2014).].
12. A. Dehghan-Manshadi, M. R. Barnett, P. D. Hodgson. Materials science and engineering A. 485, 664 (2008). Crossref

Similar papers