Influence value of deformation on the evolution of structure of monocrystal zirconium shear pressure

L. Egorova, Y. Khlebnikov, V. Pilyugin show affiliations and emails
Received 18 July 2016; Accepted 07 September 2016;
This paper is written in Russian
Citation: L. Egorova, Y. Khlebnikov, V. Pilyugin. Influence value of deformation on the evolution of structure of monocrystal zirconium shear pressure. Lett. Mater., 2016, 6(3) 237-242


The research of formation and the following evolution of ω-phase in pseudo single crystal α-zirconium during the deformation in Bridgman anvils at a pressure of 8 GPa, room temperature with the variety of the angles of rotation of the anvil has been made by TEM. Has been discovered that phase α→ω transformation occurs not in the whole material, but in the areas of pre-existing deformation twins. The initiation of development of processes of dynamic recrystallization by the deformation of zirconium to megaplastic values (е≥5) under pressure has been detected. This is based on direct TEM-observations of regular polyhedra-shaped grains with varying degrees of defects of the internal microstructure. The effect of dynamic recrystallization in zirconium occurs due to the low level of thermal activity. The stabilization of structural elements of both α- and ω-phases has been observed while reaching the deformation degree е≥8. At this stage of deformation speed of accumulation of defects in grain and movements of the growing grain is limited by the ratio of development of competing processes of fragmentation and dynamic recrystallization. Extremely deformed microstructure contains of misaligned to different angles microcrystallites average size 40-50 nm with visible edges. Microcrystallites of ω-phase have lots of defects in their internal microstructure while crystallites of α-phase do not contain any defects. The presence of orientation bonding of ω and α phases after mega-deformation has been detected, which witness the realization of ω→α transformation after the completion of the tests.

References (16)

1. Jemieson J. C. Science, 1963, v. 140, p. 72.
2. Tonkov E. Yu. Phase diagrams of elements at high pressure. M.: Science, Home edition of Physical and mathematical literature, 1979. 192 p (in Russian) [Тонков Е. Ю. Фазовые диаграммы элементов при высоком давлении. М.: Наука, Главная редакция физико-математической литературы, 1979. 192 с.].
3. Hongxiang Zong, Dezhen Xue, Xiangdong Ding and Turab Lookman. Journal of Physics: Conference Series. 2014. V.500. P. 112042.
4. Cerreta E. K., Escobedo J. P., Rigg P. A., Trujillo C. P., Brown D. W., Sisneros T. A., Clausen B., Lopez M. F., Lookman T., Bronkhorst C. A., Addessio F. L.. Acta Materialia. 2013. V. 61. P. 7712 - 7719.
5. Alshevsky Y. L., Kulnitsky B. A., Konyaev Y. S., Osipov M. P. FMM 1984, t.58, vol. 4, pp. 795 - 803 (in Russian) [Альшевский Ю. Л., Кульницкий Б. А., Коняев Ю. С., Усиков М. П. ФММ, 1984, т.58, вып. 4, стр. 795 - 803].
6. Dobromyslov A. V., Taluts N. I., Demchuk K. M., Martem'yanov A. N. FMM 1988 m. 65, no. 3, pp. 588 - 593 (In Russian) [Добромыслов А. В., Талуц Н. И., Демчук К. М., Мартемьянов А. Н. ФММ 1988, т. 65, вып. 3, стр. 588 - 593].
7. X. Shen, P. F. Yu, Q. Jing, Y. Yao, L. Gu, Y. G. Wang, X. F. Duan, R. C. Yu, and R. P. Liu. Scripta Materialia 67 (2012) 653 - 656.
8. M. V. Degtyarev, T. I. Chashchukhina, L. M. Voronova, L. S. Davydova and V. P. Pilyugin. The Physics of Metals and Metallography. Vol. 90, No. 6, 2000 p. 604 - 612.
9. Yu. V. Khlebnikova, V. A. Sazonova, D. P. Rodionov, N. F. Vil’danova, L. Yu. Egorova, Yu. V. Kaletina, I. L. Solodova, and V. M. Umova. The Physics of Metals and Metallography. Vol. 108, No. 3, 2009 р. 254 - 263.
10. B. Srinivasarao, A. P. Zhilyaev, M. T. Pérez-Prado. Orientation dependency of the alpha to omega plus beta transformation in commercially pure zirconium by high-pressure torsion. Scripta Mater. Vol. 65, 2011. No. 3, p. 241 - 244.
11. Rapperport E. J., Hartley C. S. “Trans. AIME”, v. 218, p. 869 - 877, 1960.
12. Papirov I. I., Tihinsky G. F. Nature zirconium plastic deformation. Kharkiv, KhPTI Ukrainian Academy of Sciences, 1976, 36 p (in Russian) [Папиров И. И., Тихинский Г. Ф. Природа пластической деформации циркония. Харьков, ХФТИ АН УССР, 1976, 36 стр.].
13. A. V. Dobromyslov, N. I. Taluts. 1990, № 5, 108 - 115 (In Russian) [А. В. Добромыслов, Н. И. Талуц. ФММ, 1990, № 5, с. 108 - 115].
14. A. M. Glezer and L. S. Metlov. Physics of the Solid State Vol. 52, No. 6, 2010 p. 1162 - 1169.
15. V. P. Pilyugin, Yu. V. Khlebnikova, L. Yu. Egorova, T. R. Suaridze, N. N. Resnina, and A. M. Patselov. The Physics of Metals and Metallography. Vol. 116, No. 12, 2015 p. 1203 - 1213.
16. A. V. Lykov The theory of heat conduction. M.: "High School", 1967. 600 p. (In Russian) [Лыков А. В. Теория теплопроводности. М.: “Высшая школа”, 1967. 600 с.].

Cited by (4)

A. Yaroslavzev, I. Evdokimov, B. Kulnitskiy, I. Perezhogin, V. Blank, I. Pakhomov, V. Denisov. Mater. Res. Express. 6(4), 046506 (2019). Crossref
L. Yu. Egorova, Yu. V. Khlebnikova, V. P. Pilyugin. Tech. Phys. 65(1), 96 (2020). Crossref
L. Yu. Egorova, Yu. V. Khlebnikova, V. P. Pilyugin, N. N. Resnina. Phys. Metals Metallogr. 123(5), 482 (2022). Crossref
L.Yu. Egorova, Yu.V. Khlebnikova, Yu.V. Korkh, S.A. Maslova, V.P. Pilyugin, T.V. Kuznetsova. Materials Characterization. 211, 113876 (2024). Crossref

Similar papers