Effect of Hydrogen on Microstructure of alpha-Titanium Alloys Deformed at 600 0C

Received: 19 May 2014; Revised: 17 June 2014; Accepted: 09 July 2014
Citation: M.A. Murzinova. Effect of Hydrogen on Microstructure of alpha-Titanium Alloys Deformed at 600 0C. Letters on Materials, 2014, 4(4) 214-217
BibTex   https://doi.org/10.22226/2410-3535-2014-4-214-217


Data on microstructural parameters of commercial pure titanium and -titanium alloy Ti-5Al-2.5Sn with various hydrogen content strained at 600 C are represented. Technique of electron backscattering diffraction was applied for quantitative analysis of the microstructure. Obtained results and literature data were used to analyze the relationships between flow stress and the mean grain size in deformed alloys. It was shown that continuous dynamic recrystallization occurred in the Ti-5Al-2.5Sn alloy at deformation conditions used in the present study. In this case the effect of hydrogen on the flow stress and microstructure of deformed alloy was very weak. Under the same deformation conditions, the dynamic recrystallization in commercial pure titanium took place in accordance with both discontinuous and continuous mechanisms. At that the hydrogen dissolved in the -phase led to decrease in flow stress and to refinement of recrystallized -grains.


1. Hidrogen in Metalas III. Ed. by H. Wipf, Springer. (1997)340 p.
2. W.R. Kerr, Metall. Mater. Trans. A16, 1077 (1985).
3. O.N. Senkov, J.J. Jonas, F.H. Froes. JOM. 48 (7), 42 (1996).
4. A.A. Ilyin, B.A. Kolachev, V.K. Nosov, in: V. Goltsov (Ed.), Progress in Hydrogen Treatment of Materials, Donetsk -Coral Gables: Kassiopeya LTD. (2001) p. 299.
5. O.N. Senkov, F.H. Froes. Hydrogen Energy. 24, 565(1999).
6. A.A. Ilyin, B.A. Kolachev, V.K. Nosov, A.M. Mamonov.Hydrogen processing of titanium alloys. Ed.by A.A. Ilyin, Moscow, MISIS. (2002) 392 p. (in Russian).
7. M.A. Murzinova, G.A. Salishchev, D.D. Afonichev.Int.J. Hydrogen Energy. 27, 775 (2002).
8. M.A. Murzinova, G.A. Salishchev, D.D. Afonichev.Phys.Met. Metallogr. 104(2), 195 (2007).
9. O.N. Senkov, J.J. Jonas. Metall. Mater. Trans. A27 (7), 1869 (1996).
10. M.A. Murzinova, G.A. Salishchev, D.D. Afonichev. Mater.Sci. Forum. 467-470, 1223 (2004).
11. O.N. Senkov, J.J. Jonas. Metall. Mater. Trans. A27(7), 1877(1996).
12. O.N. Senkov, M. Dubois, J.J. Jonas. Metall. Mater. Trans.A27(12), 3963 (1996).
13. H. Okamoto, in ASM Handbook, Volume 3. Alloy PhaseDiagrams. 1-st Printing, E-Publishing, ASM International.(1992) p.989.
14. F.J. Humphreys. J. Mater. Sci. 36, 3833 (2001).
15. ASTM E112-10.
16. M.A. Shtremel. Strength of alloys. Part 1. Moscow, MISIS(1999) 384 p. (in Russian).
17. T. Sakai, J.J. Jonas. Acta Metall. 32(2), 189 (1984).
18. B. Derby. Acta Metall. Mater. 39(5), 955 (1991).
19. F.J. Humphreys and M. Hatherly. Recrystallization andRelated Annealing Phenomena, 2nd ed. Elsevier Ltd.(2004) 628 p.
20. H.J. McQueen, Metall. Sci, & Technology. 28-1, 12(2010).
21. H. Beladi, P. Cizek, P.D. Hodgson. Metall. Mater. Trans.40 A, 1175 (2009).
22. A. Galiyev, R. Kaibyshev, G. Gottstein. Acta Mater. 49, 1199 (2001).
23. S.V. Zherebtsov, G.A. Salishchev, R.M. Galeyev. Defectand Diffusion Forum. 208-209, 237 (2002).
24. A. Belyakov, T. Sakai, H. Miura, K. Tsuzaki. Philos. Mag.A81, 2629 (2001).
25. A. Belyakov, K. Tsuzaki, H. Miura, T. Sakai. Acta Mater.51, 847 (2003).
26. N. Dudova, A. Belyakov, T. Sakai, R. Kaibyshe. Acta Mater.58, 3624 (2010).
27. Materials in mechanical engineering. Vol. 1. Nonferrousmetals and alloys. Ed. by I.V. Kudrayvcev, L.P. Luzhnikov.Handbook in 5 volumes. Moscow, Mechanical engineering(1967) 304 p. (in Russian).