Thermal characterization of magnetite obtained by means of plasma-electrolytic synthesys 

P.A. Katasonov, R.A. Garifullin show affiliations and emails
Received 14 June 2013; Accepted 27 September 2013;
This paper is written in Russian
Citation: P.A. Katasonov, R.A. Garifullin. Thermal characterization of magnetite obtained by means of plasma-electrolytic synthesys . Lett. Mater., 2013, 3(4) 322-325
BibTex   https://doi.org/10.22226/2410-3535-2013-4-322-325

Abstract

Thermal and X-ray diffraction analysis of the magnetite powder that is obtained in the plasma-electrolytical synthesis was conducted. It has been found that the power has bimodal grain size distribution. Through thermomagnetic study Curie transition and blocking temperature measured at 1 kHz has been determined as 546 and 323 ºС respectively. Differential thermal analysis has shown that the sample begins to oxidize at 450 ºC to α-Fe2O3 without an intermediate transition to γ-Fe2O3.

References (25)

1. S. Miyake, N. Kinomura, T. Suzuki, T. Suwa. Journal ofMaterials Science, 34(12), 2921 (1999).
2. Everhard K., Thomas C. A., Denis M. C., Eric D. D. Magneticrecording handbook: technology and applications. NewYork, McGraw Hill Co. 101 (1998).
3. J. Gimenez, M. Martinez, J. de Pablo, M. Rovira, L. Duro.Journal of Hazardous Materials. 141, 575 (2007).
4. O. D. Linnikov, I. V. Rodina, V. G. Shevchenko, A. A.Ermakov, I. V Medvedeva, A. A. Mysik, M. A. Ujmin, N.N. Shhjogoleva, V. V. Platonov, V. V.Osipov. Voda: himijai jekologija. 5, 68 (2011) (in Russian) [О. Д. Линников, И. В. Родина, В. Г. Шевченко, А. А. Ермаков, И. ВМедведева, А. А. Мысик, М. А. Уймин, Н. Н. Щёголева, В. В. Платонов, В. В.Осипов. Вода: химия и экология.5, 68 (2011)].
5. S. Porada, B. B. Sales, H. V. M. Hamelers, P. M. Biesheuvel.The Journal of Physical Chemistry Letters. 3(12), 1613(2012).
6. A. I. Zorin, E. A. Nikitenko, Je. Sh. Hankin, S. A. Korovnikov.Korrozija i zashhita v neftegazovoj promyshlennosti. 12, 10 (1972) (in Russian) [А. И. Зорин, Е. А. Никитенко, Э. Ш. Ханкин, С. А. Коровников. Коррозия и защитав нефтегазовой промышленности. 12, 10 (1972)].
7. S. C. Pang, W. H. Khoh, S. F. Chin. Journal of MaterialsScience. 45(20), 5598 (2010).
8. N. D. Phu, D. T. Ngo, L. H. Hoang, N. H. Luong, N. H.Hai. Journal of Physics D: Applied Physics. 44(34), 345(2011).
9. Ju. I. Shakirov. Harakteristiki plazmennojjelektrotermicheskoj ustanovki s zhidkim katodom:Dissertacija na soiskanie stepeni kandidata tehnicheskihnauk. Leningrad. 132 (1990) (in Russian) [Ю. И.Шакиров. Характеристики плазменной электротер-мической установки с жидким катодом: Диссертацияна соискание степени кандидата технических наук.Ленинград (1990) 132 c].
10. R. M. Cornell, U. Schwertmann. The Iron Oxides:Structure, properties, reactions, occurences and uses.Second edition. Weinheim, Willey-VCH Verlag GmbH &Co. KGaA. 683 (2003).
11. A. A. Klopotov i d. r. Osnovy rentgenostrukturnogoanaliza v materialovedenii.TGASU. 275 (2012) . (inRussian) [А. А. Клопотов и д. р. Основы рентгено-структурного анализа в материаловедении.ТГАСУ(2012) 275 с.].
12. E. I. Kondorskij. Izv. AN SSSR. Ser. Fizich. 42(8), 1638(1978) (in Russian) [Кондорский Е. И. Изв. АН СССР.Сер. Физич. 42(8), 1638 (1978)].
13. E. C. Stoner, E. P. Wohlfarth, Philosophical Transactionsof the Royal Society A: Physical, Mathematical andEngineering Sciences. 240(826), 599 (1948).
14. E. P. Najden. Izvestija vysshih uchebnyh zavedenij. Fizika.2, 66 (2007) (in Russian) [Е. П. Найден. Известия выс-ших учебных заведений. Физика. 2, 66 (2007)].
15. A. I. Gusev. Nanomaterialy, nanostruktury, nanotehnologii. FIZMATLIT. 416 (2005). (in Russian)[А. И. Гусев. Наноматериалы, наноструктуры, нано-технологии. ФИЗМАТЛИТ (2005) 416 с.].
16. Jr., W. F. Brown. Physical Review. 130(5), 1677 (1963).
17. J. P. Sanders, P. K. Gallagher. Journal of Thermal Analysisand Calorimetry. 72(3), 777 (2003).
18. E. Murad, U. Schwertmann. Clays and clay minerals.41(1), 111 (1993).
19. B. P. Pashaev. Sbornik nauchnyh trudov Dagestanskogouniversiteta. 16 (1975) (in Russian) [Б. П. Пашаев.Сборник научных трудов Дагестанского университе-та. 16 (1975)].
20. Y. P. Khanna, T. J. Taylor. Polymer Engineering & Science.(28), 1042 (1988).
21. J. E. Shelby. Introduction to glass science and technology.London, The Royal Society of Chemistry. 297 (2005).
22. V. R. V. Ramanan, G. E. Fish. Journal of Applied Physics.53, 2273 (1982).
23. N. X. Sun, X. D. Liu, K. Lu. Scripta Materialia. 34(8), 1201(1996).
24. N. Wildak, R. Hartel, S. Narine. Crystallization andSolidification properties of lipids. Urbana, AOCS Press.249 (2001).
25. A. Sharples. Introduction to Polymer Crystallization.New York, St. Martin’s Press. 138 (1966).

Cited by (3)

1.
O. MAKIDO, G. KHOVANETS�, O. KHAVUNKO. Proc. Shevchenko Sci. Soc. Chem. Sci. 2021(66), 90 (2021). Crossref
2.
V.G. Ilves, N. Pizúrová, P.M. Korusenko, S. Sokovnin, M.E. Balezin, A.S. Gerasimov, M.A. Uimin, M.G. Zuev, A.A. Vasin. Ceramics International. (2023). Crossref
3.
Artyom P. Shipitsyn, Andrei M. Nepomiluev, Anastasiya E. Tyurnina. Reference Materials in Measurement and Technology, Chapter 24, p.367 (2024). Crossref

Similar papers