Friction stir processing (FSP) and superplasticity

Accepted  26 March 2015
Citation: T.R. McNelley. Friction stir processing (FSP) and superplasticity. Lett. Mater., 2015, 5(3) 246-252
BibTex   https://doi.org/10.22226/2410-3535-2015-3-246-252

Abstract

FSP is an allied technology of friction stir welding (FSW). The development and applications of these technologies are reviewed and additional considerations such as processing pattern and step over distance between successive passes in FSP are discussed. Microstructures formed as a result FSP often exhibit refined and uniform distributions of non-deforming constituents as well as highly refined grain structures, and superplastic response following FSP of wrought 7XXX and 5XXX Al alloys has been achieved. The application of multi-pass FSP to cast metals, including as-cast AA5083 and AA356 will be summarized and the conversion of as-cast microstructures to a wrought condition in the absence of external shape change will be shown. Grain refinement is the result of recrystallization during the rapid thermomechanical cycle of FSP. The mechanism(s) involved in homogenization of constituent particle distributions remain to be determined. The FSP-induced superplastic response of continuously cast AA5083 in the as-cast condition will be documented.

References (32)

1. R. S. Mishra and Z. Y. Ma, Mater. Sci. Eng. R 50, 1 (2005).
2. Friction Stir Welding and Processing, ASM International, R. S. Mishra and M. W. Mahoney, Eds., Materials Park, OH (2007).
3. W. M. Thomas, et al., G. B. Patent Application No. 9125978.8, 1991; U. S. Patent No. 5460317, 1991.
4. R. S. Mishra, in Friction Stir Welding and Processing. ASM International, R. S. Mishra and M. W. Mahoney, Eds., Materials Park, OH. 309 (2007).
5. T. R. McNelley, K. Oh-Ishi and A. P. Zhilyaev, in Friction Stir Welding and Processing. ASM International, R. S. Mishra and M. W. Mahoney, Eds., Materials Park, OH. 155 (2007).
6. K. Oh-Ishi and T. R. McNelley, Metall. Mater. Trans. A, 35, 2951 (2004).
7. K. Oh-Ishi and T. R. McNelley, Metall. Mater. Trans. A, 36, 1575 (2005).
8. K. Oh-Ishi, A. P. Zhilyaev and T. R. McNelley, Metall. Mater. Trans. A, 37, 2239 (2006).
9. S. Swaminathan, et al., Metall. Mater. Trans. A, 41, 631 (2010).
10. R. D. Doherty, et al., Mater. Sci. Eng. A 238, 219 (1997).
11. A. Askari, S. Silling, B. London, M. W. Mahoney, in Friction Stir Welding and Processing, K. V. Jata, et al., Eds., TMS, Warrendale, PA, 43 (2001).
12. D. P. Field, T. W. Nelson, Y. Hovanski, K. V. Jata, Metall. Mater. Trans. A, 32, 2869 (2001).
13. T. R. McNelley, S. Swaminathan and J. Q. Su, Scri. Mater., 58, 349 (2008).
14. J. Q. Su, T. W. Nelson and C. J. Sterling, J. Mater. Res., 18, 1757 (2003).
15. J. A. Wert, N. E. Paton, C. H. Hamilton and M. W. Mahoney, Metall. Trans. A, 12A, 1265 (181).
16. T. R. McNelley, et al., Metall. Mater. Trans. A, 39, 50 (2008).
17. R. S Mishra, et al., Scri. Mater., 42, 163 (2000).
18. R. S. Mishra and M. E. Mahoney, Mater. Sci. Forum, 357-359, 507 (2001).
19. M. W. Mahoney, R. S. Mishra and T. W. Nelson, in Proceedings of the 3rd Int’l Symp. On Friction Stir Welding, JWS, Kobe, Japan, (2001).
20. M. W. Mahoney, et al., in Friction Stir Welding and Processing, K. V. Jata, et al., Eds., TMS, Warrendale, PA, 183 (2001).
21. M. W. Mahoney, R. S. Mishra and T. W. Nelson, Industrial Heating, 31 (February, 2002).
22. Z. Y. Ma, R. S. Mishra, M. W. Mahoney and R. Grimes, Acta Mater., 50, 4419 (2002).
23. Z. Y. Ma, R. S. Mishra, M. W. Mahoney and R. Grimes, Mater. Sci. Eng., A351, 148 (2003).
24. M. W. Mahoney, A. J. Barnes, W. H. Bingel and C. Fuller, in Proceedings of the International Conference on Superplasticity in Advanced Materials, IOM3, Oxford, U. K. (2003).
25. Z. Y. Ma, R. Mishra and M. W. Mahoney, Scri. Mater., 50, 931 (2004).
26. M. W. Mahoney, R. S. Mishra, T. W. Nelson and A. J. Barnes, in Proceedings of LiMAT-2003, W. E. Frazier, Y. D. Han, N. J. Kim and E. W. Lee, Eds., Center for Advanced Materials, POSTECH, Korea (2004).
27. Z. Y. Ma, R. S. Mishra, M. W. Mahoney and R. Grimes, Metall. Mater. Trans. A, 35, 1951 (2004).
28. M. W. Mahoney, A. J. Barnes, W. H. Bingel and C. Fuller, Mater. Sci. Forum, 447-448, 505 (2004).
29. J. G. Shroth, in Proceedings of Advances in Superplasticity and Superplastic Forming, E. M. Taleff, et al., Eds., TMS, Warrendale, PA, 9 (2004).
30. M. A. Kulas, et al., Metall. Mater. Trans. A, 36, 1249 (2005).
31. M. A. Kulas, et al., Metall. Mater. Trans. A, 37, 645 (2006).
32. W. P. Green, et al., Metall. Mater. Trans. A, 37, 2727 (2006).

Cited by (6)

1.
N. Lezhnin, A. Makarov, S. Luchko. Lett. Mater. 9(3), 310 (2019). Crossref
2.
A. Valeeva, A. Akhunova, D. Kabirova, M. Imayev, R. Fazlyakhmetov. Lett. Mater. 11(2), 119 (2021). Crossref
3.
H. Mirzadeh. Materials Science and Engineering: A. 819, 141499 (2021). Crossref
4.
N. Hassanamraji, A. Eivani, M. Aboutalebi. Journal of Materials Research and Technology. 14, 2998 (2021). Crossref
5.
A. Valeeva, A. Akhunova, M. Imayev, R. Fazlyakhmetov. IOP Conf. Ser.: Mater. Sci. Eng. 1008(1), 012025 (2020). Crossref
6.
V. M. Magalhães, C. Leitão, D. M. Rodrigues. Science and Technology of Welding and Joining. 23(5), 400 (2018). Crossref

Similar papers