Influence of electric pulse treatment on structure and hardness of cryorolled aluminum

I.S. Valeev, A.K. Valeeva ORCID logo , R.R. Ilyasov, E.V. Avtokratova, S.V. Krymskiy, O.S. Sitdikov, M.V. Markushev show affiliations and emails
Received 09 July 2021; Accepted 24 August 2021;
This paper is written in Russian
Citation: I.S. Valeev, A.K. Valeeva, R.R. Ilyasov, E.V. Avtokratova, S.V. Krymskiy, O.S. Sitdikov, M.V. Markushev. Influence of electric pulse treatment on structure and hardness of cryorolled aluminum. Lett. Mater., 2021, 11(3) 351-356


It was found that the electric pulse of low capacity leads to the development in the cryorolled pure aluminum of recovery and continuous recrystallization without hardness changes. Under threshold energy conditions there were found transition from in-situ recrystallization to grain growth, and sharp decrease in hardness.The influence of the energy of electric pulse treatment (EPT) in the range of integral current densities (Kj) from 0.06 ×105 to 0.29 ×105 A2s / mm4 on the structure and hardness of coarse-grained high-purity Al, isothermally rolled up to a total strain of 90 % at a liquid nitrogen temperature, was studied. It was found that EPT with an energy up to Кj = 0.104 ×105 A2s / mm4 practically did not affect the microhardness obtained in the cryorolled aluminum (45 – 50 HV). An increase in the EPT energy to Кj = 0.121×105 A2s / mm4 led to a rapid drop of the hardness to 30 HV followed by its gradual stabilization near 25 HV at higher Кj values. It was established that an enhanced microhardness of rolled Al resulted from formation of a well developed cellular structure with a crystallite size of about 2 μm, containing less than 10 % of ultrafine grains of about 4 μm in size. The minor hardness changes after EPT with Кj up to 0.104 ×105 A2s / mm4 were related to occurrence of recovery and continuous recrystallization, resulted only in improving the deformation structure without noticeable changes in its type and the crystallite sizes. Therewith the softening caused by a partial decrease in the scalar dislocation density and the microdeformation of the crystal lattice was compensated by increasing the high angle boundaries fraction. At EPT with Кj = 0.121×105 A2s / mm4, the deformation structure was severely replaced by the fine-grain recrystallized one with the grain size of 19 μm, and resulted in the loss of the strenthening effect, caused by rolling. With further increase in the EPT energy, an extensive grain growth was observed, leading to the formation of a non-uniform structure grains and to appropriate material softening, owing to the grain coarsening. It was concluded that the restoration processes that took place during EPT were similar in nature to those that occur during furnace annealing of heavily deformed materials. Therewith, the short time of the thermal exposure on the deformed metal during EPT was compensated by high applied energies.

References (22)

1. I. A. Gindin, M. B. Lazareva, V. P. Lebedev, Ya. D. Starodubov. FMM. 23, 138 (1967). (in Russian) [И. А. Гиндин, М. Б. Лазарева, В. П. Лебедев, Я. Д. Стародубов. ФММ. 23, 138 (1967).].
2. I. A. Gindin, M. B. Lazarev, V. P. Lebedev et al. FMM. 24, 347 (1967). (in Russian) [И. А. Гиндин, М. Б. Лазарева, В. П. Лебедев и др. ФММ. 24, 347 (1967).].
3. Y. Huang, P. B. Prangnell. Acta Mater. 56, 1619 (2008). Crossref
4. S. V. Krymskiy, E. V. Avtokratova, O. S. Sitdikov, A. V. Mikhaylovskaya, M. V. Markushev. Physics of Metals and Metallography. 116 (7), 676 (2015). Crossref
5. S. Krymskiy, O. Sitdikov, E. Avtokratova, M. Markushev. Transactions of Nonferrous Metals Society of China (English Edition). 30 (1), 14 (2020). Crossref
6. D. Magalhaes, A. Kliauga, M. Ferrante, V. Sordi. J. Mater. Sci. 52, 7466 (2017). Crossref
7. M. Markushev, S. Krymskiy, R. Ilyasov, E. Avtokratova, A. Khazgalieva, O. Sitdikov. Lett. Mater. 7 (4), 447 (2017). Crossref
8. J. Shi, L. Hou, J. Zuo, L. Zhuang, J. Zhang. Materials Science & Engineering A. 701, 274 (2017). Crossref
9. S. Choi, J. Won, S. Lee, J. Hong, Y. Choi. Materials Science & Engineering A. 738, 75 (2018). Crossref
10. V. S. Sarma, J. Wang, W. W. Jian, A. Kauffmann, H. Conrad, J. Freudenberger, Y. T. Zhu. Mater Sci Eng A. 527, 7624 (2010). Crossref
11. T. Konkova, S. Mironov, A. Korznikov, S. L. Semiatin. Acta Mater. 58, 5262 (2010). Crossref
12. I. Sh. Valeev, Z. G. Kamalov. JMEPEG. 12, 272 (2003). Crossref
13. L. Voronova, M. Degtyarev, T. Chashchukhina, T. Gapontseva, V. Pilyugin. Lett. Mater. 8 (4), 424 (2018). Crossref
14. T. Konkova, I. Valeev, S. Mironov et al. J. All. Comp. 659, 184 (2016). Crossref
15. T. Konkova, I. Valeev, S. Mironov et al. J. Mater. Res. 29 (22), 2727 (2014). Crossref
16. I. Sh. Valeev, A. Kh. Valeeva, R. R. Ilyasov, O. Sh. Sitdikov, M. V. Markushev. Lett. Mater. 9 (4), 447 (2019). Crossref
17. R. R. Ilyasov, A. Kh. Valeeva, I. Sh. Valeev, O. Sh. Sitdikov, M. V. Markushev. IOP Conf. Series: Materials Science and Engineering. 1008, 012006 (2020). Crossref
18. Y. Sheng, Y. Hua, X. Wang, X. Zhao, L. Chen, H. Zhou, J. Wang, C. C. Berndt, W. Li. Materials. 11, 185 (2018). Crossref
19. F. J. Humphreys, M. Hatherly. Recrystallization and Related Annealing Phenomena. Elsevier (2004) 658 p. Crossref
20. A. M. Russell, K. L. Lee. Stucture-Property Relations in Nonferrous Metals. New York, Wiley (2005) 440 p. Crossref
21. S. S. Gorelik. Recristallizatsiya metallov i splavov. Moscow, Metallurgiya (1978) 568 p. (in Russian) [С. С. Горелик Рекристаллизация металлов и сплавов. Москва, Металлургия (1978) 568 с.].
22. A. Belyakov, T. Sakai, H. Miura, R. Kaibyshev, K. Tsuzaki. Acta Materialia. 50 (6), 1547 (2002). Crossref

Similar papers