Effect of microcrystallites formed by deformation on the growth and orientation of grains during recrystallization of iron

L. Voronova, M. Degtyarev, T. Chashchukhina, D. Shinyavskii, T. Gapontseva show affiliations and emails
Received 07 August 2017; Accepted 07 September 2017;
Citation: L. Voronova, M. Degtyarev, T. Chashchukhina, D. Shinyavskii, T. Gapontseva. Effect of microcrystallites formed by deformation on the growth and orientation of grains during recrystallization of iron. Lett. Mater., 2017, 7(4) 359-362
BibTex   https://doi.org/10.22226/2410-3535-2017-4-359-362

Abstract

Scanning electron microscopy was used to study the behavior during annealing of iron, in which an ultrafine structure of two different types was created by deformation under high pressure: cellular and submicrocrystalline. The figure shows orientational maps (EBSD) of iron with different initial type of structure after annealing at 750 ° C, 1h.The changes of ultradispersed structure in deformed iron after annealing has been investigated. An ultradispersed structure of two different types—cellular and submicrocrystalline (SMC)—has been formed in iron by high pressure torsion deformation. The effect of the deformed-structure type on the temperature of recrystallization onset, the size of recrystallized grains, and the recrystallization texture has been understood. The comparison of recrystallization of the initial cellular and SMC structures should be made to determine the role of microcrystallites. The recrystallization temperature of iron with an SMC structure is 200–250°С lower than that with a cellular structure, because of the presence of microcrystallites, ready recrystallization nuclei. The recrystallization (annealing at 750°C, 1h) of the cellular structure results in the formation of a coarse-grained structure with an average recrystallized grain size that is by an order of magnitude coarser than that after the same annealing of the SMC structure (5 and 180 μm, respectively). The significant distinct feature of the SMC structure in contrast to the cellular one is the annealing-assisted formation of a <110> recrystallization texture in it, whereas the annealing of iron with the cellular structure does not cause the formation of a recrystallization macrotexture. An increase in the sharpness of the recrystallization texture correlates with a decrease in the average grain-boundary misorientation angle.

References (19)

1. H. W. Zhang, X. Huang, R. Pippan, N. Hansen. Acta Materialia. 58, 1698 (2010).
2. F. J. Humphreys, M. Hatherly. Recrystallization and related annealing phenomena. Amsterdam; Boston: Elsevier Ltd. (2004). 628p.
3. I. A. Ditenberg, E. A. Korznikova, A. N. Tyumentsev, D. Setman, M. Kerber. Letters on materials. 4 (2), 100 - 103 (2014). Crossref
4. R. Z. Valiev, I. V. Alexandrov. Nanostructured materials obtained by severe plastic deformation. M.: Logos. (2000) 272 p. (in Russian) [Валиев Р. З., Александров И. В. Наноструктурные материалы, полученные интенсивной пластической деформацией. М.: Логос. 2000. 272 с.].
5. M. V. Degtyarev, T. I. Chashchukhina, L. M. Voronova, A. M. Patselov, V. P. Pilyugin. Асta Mater. 55, 6039 (2007).
6. E. A. Korznikova. Letters on materials. 2 (2), 67 - 70 (2012). Crossref
7. N. A. Smirnova, V. I. Levit, Pilyugin V. P., R. I. Kuznetsov, L. S. Davydova, V. A. Sazonova, Phys. Met. Metallogr. 61 (6), 127 (1986).
8. R. Z. Valiev, Y. V. Ivanisenko, E. F. Rauch, B. Baudelet. Acta Mater. 44, 4705 (1996).
9. Y. Todaka, M. Yoshii, M. Umemoto, C. Wang, K. Tsuchiya. Mater. Sci. Forum 584 - 586, 597 (2008).
10. S. Descartes, C. Desrayaud, E. F. Rauch. Mater. Sci. Eng. A 528, 3666 (2011).
11. Y. V. Ivanisenko, R. Z. Valiev, H.-J. Fecht. Mater. Sci. Eng. A 390, 159 (2005).
12. A. Hosokawa, S. Ii, K. Tsuchiya. Materials Transactions. 55 (7), 1097 (2014).
13. Yu. V. Ivanisenko, A. A. Sirenko, A. V. Korznikov. Phys. Met. Metallogr. 87 (4), 329 (1999).
14. A. N. Aleshin, A. M. Arsenkin, S. V. Dobatkin. Mater. Sci. Forum. 550, 465 (2007).
15. L. M. Voronova, M. V. Degtyarev, T. I. Chashchukhina. Phys. Met. Metallogr. 104, 262 (2007).
16. P. Ghosh, , O. Renk, R. Pippan. Mater. Sci. Eng. A. 684, 101 (2017).
17. S. S. Gorelik. Recrystallization of Metals and Alloys., Moscow, Metallurgiya. (1978) 568p. (in Russian).
18. F. J. J. Humphreys. Mater. Sci. 36, 3833 (2001).
19. M. V. Degtyarev, L. M. Voronova, V. V. Gubernatorov, T. I. Chashchukhina. Dokl. Phys. 47, 647 (2002).

Cited by (5)

1.
R. Tejedor, K. Edalati, J. Benito, Z. Horita, J. Cabrera. Materials Science and Engineering: A. 743, 597 (2019). Crossref
2.
L. M. Voronova, T. I. Chashchukhina, M. V. Degtyarev. Phys. Metals Metallogr. 119(10), 969 (2018). Crossref
3.
T.M. Gapontseva, M.V. Degtyarev, L.M. Voronova, T.I. Chashchukhina, V.P. Pilyugin. International Journal of Refractory Metals and Hard Materials. 94, 105389 (2021). Crossref
4.
M. V. Degtyarev, V. P. Pilyugin, T. I. Chashchukhina, L. M. Voronova. Phys. Metals Metallogr. 120(12), 1193 (2019). Crossref
5.
K. Shugaev, M. Degtyarev, L. Voronova, T. Chashchukhina, T. Gapontseva. Lett. Mater. 12(2), 94 (2022). Crossref

Similar papers