Metallographic study and ultrasonic evaluation of damage accumulation in a low-carbon steel welded joint

A.V. Gonchar ORCID logo , K.V. Kurashkin ORCID logo show affiliations and emails
Received 28 March 2023; Accepted 20 April 2023;
Citation: A.V. Gonchar, K.V. Kurashkin. Metallographic study and ultrasonic evaluation of damage accumulation in a low-carbon steel welded joint. Lett. Mater., 2023, 13(3) 204-208
BibTex   https://doi.org/10.22226/2410-3535-2023-3-204-208

Abstract

Observed microstructure changes caused by loading mainly concern in the development of persistent slip bands. Acoustic birefringence decreases linearly with cycles under fatigue and increases monotonically with plastic strain under tension.This paper is devoted to metallographic studies and acoustic birefringence measurements in specimens, made from a welded joint of ASTM 1020 steel under uniaxial static and cyclic loading. Microstructural changes on the surface were observed using an optical microscope. It was found that the development of slip bands varies in the base metal and in the heat affected zone. The greater mobility of dislocations in the heat-treated metal contributes to a more intensive development of slip bands. Acoustic birefringence of ultrasonic shear waves was measured by the echo method. For both the base and heat-treated metal, acoustic birefringence was found to decrease linearly with cycles endured under fatigue, while, under uniaxial tension, one was found to increase monotonically with plastic strain. The development of microdefects and the formation of a deformation texture produce differently directed effects on the change in acoustic birefringence. Based on the results obtained, an ultrasonic technique was proposed for damage evaluation using data of acoustic birefringence measurements.

References (22)

1. H.-a. Nishikawa, Y. Furuya, S. Igi, S. Goto, F. Briffod, T. Shiraiwa, M. Enoki, T. Kasuya. Fatigue Fract. Eng. Mater. Struct. 43, 1239 (2020). Crossref
2. F. Dittrich, J. Kaars, B. Masek, S. Jenicek, M. V.-X. Wagner, P. Mayr. J. Mater. Process. Tech. 268, 37 (2019). Crossref
3. L. Lan, G. Shao. Micron. 131, 102828 (2020). Crossref
4. J. Veerababu, S. Goyal, A. Nagesha. Int. J. Fatigue. 149, 106307 (2021). Crossref
5. W. Fricke. Mar. Struct. 16, 185 (2003). Crossref
6. M. Besel, A. Brueckner-Foit. Fatigue Fract. Eng. Mater. Struct. 31, 885 (2008). Crossref
7. S. Pan, G. Yu, X. He, S. Li, Y. Zhang, Q. Li. Int. J. Fatigue. 118, 139 (2019). Crossref
8. A. V. Gonchar, M. S. Anosov, D. A. Ryabov. Russ. J. Nondestruct. Test. 58, 790 (2022). Crossref
9. V. A. Danilov, D. L. Merson. Lett. Mater. 12 (3), 261 (2022). Crossref
10. Ł. Pejkowski, M. Karuskevich, T. Maslak. Fatigue Fract. Eng. Mater. Struct. 42, 2315 (2019). Crossref
11. V. D. Sitdikov, A. A. Nikolaev, G. V. Ivanov, A. K. Makatrov, A. V. Malinin. Lett. Mater. 12 (1), 65 (2022). Crossref
12. A. Gonchar, K. Kurashkin, O. Andreeva, M. Anosov, V. Klyushnikov. Fatigue Fract. Eng. Mater. Struct. 45, 101 (2022). Crossref
13. J. Szelążek, S. Mackiewicz, Z. L. Kowalewski. NDT & E Int. 42, 150 (2009). Crossref
14. A. K. Belyaev, A. M. Lobachev, V. S. Modestov, A. V. Pivkov, V. A. Polyanskii, A. S. Semenov, D. A. Tret’yakov, L. V. Shtukin. Mech. Solids. 51, 606 (2016). Crossref
15. L. Carvajal, A. Artigas, A. Monsalve, Y. Vargas. Mat. Res. 20, 304 (2017). Crossref
16. K. Makowska, L. Piotrowski, Z. L. Kowalewski. J. Nondestruct. Eval. 36, 43 (2017). Crossref
17. J. Krysztofik, D. Kukla, W. Manaj, G. Socha. Russ. J. Nondestruct. Test. 55, 299 (2019). Crossref
18. V. V. Mishakin, A. V. Gonchar, S. V. Kirikov, V. A. Klyushnikov. Nondestruct. Test. Eval. 36, 225 (2021). Crossref
19. V. V. Rybin, V. N. Perevezentsev, S. V. Kirikov. Phys. Met. Metallogr. 119, 421 (2018). Crossref
20. N. Y. Zolotorevsky, E. A. Ushanova, V. V. Rybin, V. N. Perevezentsev. Lett. Mater. 11 (4), 503 (2021). Crossref
21. K. V. Kurashkin, V. V. Mishakin, S. V. Kirikov, A. V. Gonchar, V. A. Klyushnikov. Phys. Mesomech. 25, 80 (2022). Crossref
22. P. Lukáš, L. Kunz. Philos. Mag. 84, 317 (2004). Crossref

Similar papers

Funding

1. Russian Science Foundation - 21-79-10395