Influence of strain rate on deformation behaviour of an AX52 alloy processed by equal channel angular pressing (ECAP)

Z. Trojanová, K. Halmešová, J. Džugan ORCID logo , P. Palček, P. Minárik, P. Lukáč
Received: 19 August 2018; Revised: 13 September 2018; Accepted: 19 August 2018
Citation: Z. Trojanová, K. Halmešová, J. Džugan, P. Palček, P. Minárik, P. Lukáč. Influence of strain rate on deformation behaviour of an AX52 alloy processed by equal channel angular pressing (ECAP). Letters on Materials, 2018, 8(4s) 517-523
BibTex   DOI: 10.22226/2410-3535-2018-4-517-523

Abstract

Miniaturised samples from AX52 magnesium alloy were tested in tension in a wide strain rates region. Parameters of the thermally activated mechanisms were estimated and discussed.Abstract. Cast AX52 magnesium alloy with Al and Ca was processed by equal channel angular pressing (ECAP) using A route and 1-8 passes. The light and electron microscopy revealed substantial microstructure refinement. Al2Ca eutectics are the typical feature of the microstructure. The ECAP procedure disintegrated eutectic particles. Miniaturised samples, cut from the ECAPed bulks so that the samples tensile axis was parallel to the extrusion direction, were tested in tension at room temperature with initial strain rates of 0.001, 1, 10 and 50 s-1. The offset yield stress increased with increasing number of passes. Rapid increase of deformation stresses was observed for the highest strain rate of 50 s-1. Activation volumina were estimated from the strain rate dependence of the offset yield stress. Strain rate sensitivity is influenced by the number of passes. Rapid increase of the activation volume at the highest strain rate indicates the change of the deformation mechanism. Limiting small values of the activation volume were found for the highest strain rates. Tensile tests at higher strain rates revealed unstable deformation behaviour. This unstable deformation depends on the number of passes. Mechanisms operating at various strain rates are discussed in relation to the microstructure and number of ECAP passes.

References (41)

1.
R. Nimomiya, T. Ojiro, K. Kubota. Acta Metall. Mater. 43, 669 (1995). DOI: 10.1016/0956-7151(94)00269‑N
2.
M. Pekguleryuz. In: Magnesium Alloys and Their Appications (Ed. K. U. Kainer). DGM, WILEY-VCH, Weinheim (2003) p. 65.
3.
A. A. Luo. Inter. Mater. Reviews. 49, 2004, 13.
4.
M. O. Pekguleryuz, A. A. Kaya. Adv. Eng. Mater. 5, 866 (2004). DOI: 10.1002/adem.200300403
5.
A. A. Luo, B. R. Powell, A. K. Sachdev. Intermetallics. 24, 22 (2012). DOI: 10.1016/j.intermet.2012.01.001
6.
H. Gjestland, G. Nussbaum, G. Regazzoni, O. Lohne, O. Bauger. Mater. Sci. Eng. A. 134, 1197 (1991). DOI: 10.1016/0921 – 5093 (91) 90954‑L
7.
Y. Terada, N. Ishimatsu, R. Sota, T. Sato, K. Ohori. In: Magnesium Alloys. Trans Tech Publications (2003) p. 459.
8.
H. A. Elamami, A. Incesu, K. Korgiopulos, M Pekguleryuz, A. Gungor. J. Alloys Compd. 764, 216 (2018). DOI: 10.1016/j.jallcom.2018.05.309
9.
D. Wenwen, S. Yangshan, M. Xuegang, X. Feng, Z. Min, W. Dengyun. Mater. Sci. Eng. A. 356, 1 (2003). DOI: 10.1016/S0921-5093(02)00551-8
10.
Y. Estrin, A. Vinogradov. Acta Mater. 61, 782 (2013). DOI: 10.1016/j.actamat.2012.10.038
11.
H. K. Lin, J. C. Huang, T. G. Langdon. Mater. Sci. Eng. A. 250, 402 (2005). DOI: 10.1016/j.msea.2005.04.018
12.
S. R. Agnew, O. Duygulu. Int. J. Plast. 21, 1161 (2004). DOI: 10.1016/j.ijplas.2004.05.018
13.
A. S. Khan, A. Pandey, T. Gnäupel-Herold, R. K. Mishra. Int. J. Plast. 27, 688 (2011). DOI: 10.1016/j.ijplas.2010.08.009
14.
L. Li, O. Muránsky, E. A. Flores-Johnson, S. Kabra, L. Shen, G. Proust. Mater. Sci. Eng. A. 684, 37 (2017). DOI: 10.1016/j.msea.2016.12.015
15.
H. Wang, P. Wu, S. Kurukuri, M. J. Worswick, Y. Penga, D. Tanga, D. Li. Int. J. Plasticity. 107, 207 (2018). DOI: 10.1016/j.ijplas.2018.04.005
16.
T. Krajňák, P. Minárik, J. Gubicza, K. Máthis, R. Kužel, M. Janeček. Mater. Charact. 123, 282 (2017). DOI: 10.1016/j.matchar.2016.11.044
17.
M. Rund, R. Procházka, P. Konopik, J. Džugan, H. Folgar. In: ICSI 2015 1ST Int. Conf. Struct. Integr. FUNCHAL (Eds. P. M.G. P. Moreira, P. J. Tavares). ELSEVIER SCIENCE, Amsterdam, Netherlands (2015) p. 410.
18.
S. W. Xu, N. Matsumoto, K. Yamamoto, S. Kamado, T. Honma, Y. Kojima. Mater. Sci. Eng. A. 509, 105 (2009). DOI: 10.1016/j.msea.2009.02.024
19.
S. M. Liang, R. S. Chen, J. J. Blandin, M. Suery, E. H. Han. Mater. Sci. Eng. A. 480, 365 (2008). DOI: 10.1016/j.msea.2007.07.025
20.
Z. T. Li, X. D. Zhang, M. Y. Zheng, X. G. Qiao, K. Wu, C. Xu, S. Kamado. Mater. Sci. Eng. A. 682, 423 (2017). DOI: 10.1016/j.msea.2016.11.026
21.
D. Xiao, Z. Chen, X. Wang, M. Zhang, D. Chen, Mater. Sci. Eng. A. 660, 166 (2016). DOI: 10.1016/j.msea.2016.03.001
22.
Z. Trojanová, P. Lukáč. Int. J. Mater. Res. 100, 270 (2009). DOI: 10.3139/146.110054
23.
P. Minárik, R. Král, J. Čížek, F. Chmelík. Acta Mater. 107, 83 (2016). DOI: 10.1016/j.actamat.2015.12.050
24.
L. Balogh, R. B. Figueiredo, T. Ungár, T. G. Langdon. Mater. Sci. Eng. A. 528, 533 (2010). DOI: 10.1016/j.msea.2010.09.048
25.
J. Vrátná, M. Janeček, J. Čížek, D. J. Lee, E. Y. Yoon, H. S. Kim, J. Mater. Sci. 48, 4705 (2013). DOI: 10.1007/s10853‑013‑7151‑x
26.
Y. V. R. K. Prasad, R. W. Armstrong. J. Sci. Ind. Res. 32, 314 (1972).
27.
R. W. Armstrong, S. M. Walley. Int. Mater. Rev. 53, 105 (2008). DOI: 10.1179/174328008X277795
28.
R. Armstrong, R. M. Douthwaite, I. Codd, N. J. Petch. Philos. Mag. 7, 45 (1962). DOI: 10.1080/14786436208201857
29.
C. H. Cáceres, G. E. Mann, J. R. Griffiths, Metall. Mater. Trans. A. 42A, 1950 (2011). DOI: 10.1007/s11661‑010‑0599‑2
30.
D. V Wilson, J. A. CHapman. Philos. Mag. 8, 1543 (1963). DOI: 10.1080/14786436308207317
31.
N. Ono, K. Nakamura, S. Miura. Mater. Sci. Forum, 419 – 422, 195 (2003). DOI: 10.4028/www.scientific.net/MSF.419-422.195
32.
C. H. Cáceres, P. Lukáč. Philos. Mag. 88, 977 (2008). DOI: 10.1080/14786430801968611
33.
M. Mabuchi, Y. Chino, H. Iwasaki, T. Aizawa, K. Higashi. Mater. Trans. 42, 1182 (2001).
34.
Z. Trojanová, P. Lukáč, K. U. Kainer. Adv. Eng. Mater. 9, 370 (2007). DOI: 10.1002/adem.200700018
35.
U. F. Kocks, A. S. Argon, M. F. Ashby. Prog. Mater. Sci. 19, 1 (1975). DOI: 10.1016/0079-6425(75)90007-9
36.
Z. Trojanová, Z. Drozd, P. Lukáč, K. Máthis, H. Ferkel, W. Riehemann. Scr. Mater. 42, 1095 (2000). DOI: 10.1016/S1359-6462(00)00342-0
37.
R. S. Kottada, A. H. Chokshi. Metall. Mater. Trans. A. 38A, 1743 (2007). DOI: 10.1007/s11661‑007‑9190‑x
38.
J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, K. Maruyama. Mater. Trans. A. 44, 445 (2003).
39.
F. F. Lavrentev. Mater. Sci. Eng. 46, 191 (1980). DOI: 10.1016/0025-5416(80)90175-5
40.
J. Dosoudil, Z. Trojanová, P. Lukáč, F. Chmelík, F. F. Lavrentev. Kovove Mater. 33, 181 (1995).
41.
V. I. Eremin, V. D. Natsik. Scr. Metall. Mater. 26, 47 (1992). DOI: 10.1016/0956-716X(92)90366‑M