Influence of strain rate on deformation behaviour of an AX52 alloy processed by equal channel angular pressing (ECAP)

Z. Trojanová, K. Halmešová, J. Džugan ORCID logo , P. Palček, P. Minárik, P. Lukáč show affiliations and emails
Received: 19 August 2018; Revised: 13 September 2018; Accepted: 19 August 2018
Citation: Z. Trojanová, K. Halmešová, J. Džugan, P. Palček, P. Minárik, P. Lukáč. Influence of strain rate on deformation behaviour of an AX52 alloy processed by equal channel angular pressing (ECAP). Lett. Mater., 2018, 8(4s) 517-523
BibTex   https://doi.org/10.22226/2410-3535-2018-4-517-523

Abstract

Miniaturised samples from AX52 magnesium alloy were tested in tension in a wide strain rates region. Parameters of the thermally activated mechanisms were estimated and discussed.Abstract. Cast AX52 magnesium alloy with Al and Ca was processed by equal channel angular pressing (ECAP) using A route and 1-8 passes. The light and electron microscopy revealed substantial microstructure refinement. Al2Ca eutectics are the typical feature of the microstructure. The ECAP procedure disintegrated eutectic particles. Miniaturised samples, cut from the ECAPed bulks so that the samples tensile axis was parallel to the extrusion direction, were tested in tension at room temperature with initial strain rates of 0.001, 1, 10 and 50 s-1. The offset yield stress increased with increasing number of passes. Rapid increase of deformation stresses was observed for the highest strain rate of 50 s-1. Activation volumina were estimated from the strain rate dependence of the offset yield stress. Strain rate sensitivity is influenced by the number of passes. Rapid increase of the activation volume at the highest strain rate indicates the change of the deformation mechanism. Limiting small values of the activation volume were found for the highest strain rates. Tensile tests at higher strain rates revealed unstable deformation behaviour. This unstable deformation depends on the number of passes. Mechanisms operating at various strain rates are discussed in relation to the microstructure and number of ECAP passes.

References

1. R. Nimomiya, T. Ojiro, K. Kubota. Acta Metall. Mater. 43, 669 (1995). Crossref
2. M. Pekguleryuz. In: Magnesium Alloys and Their Appications (Ed. K. U. Kainer). DGM, WILEY-VCH, Weinheim (2003) p. 65.
3. A. A. Luo. Inter. Mater. Reviews. 49, 2004, 13.
4. M. O. Pekguleryuz, A. A. Kaya. Adv. Eng. Mater. 5, 866 (2004). Crossref
5. A. A. Luo, B. R. Powell, A. K. Sachdev. Intermetallics. 24, 22 (2012). Crossref
6. H. Gjestland, G. Nussbaum, G. Regazzoni, O. Lohne, O. Bauger. Mater. Sci. Eng. A. 134, 1197 (1991). Crossref
7. Y. Terada, N. Ishimatsu, R. Sota, T. Sato, K. Ohori. In: Magnesium Alloys. Trans Tech Publications (2003) p. 459.
8. H. A. Elamami, A. Incesu, K. Korgiopulos, M Pekguleryuz, A. Gungor. J. Alloys Compd. 764, 216 (2018). Crossref
9. D. Wenwen, S. Yangshan, M. Xuegang, X. Feng, Z. Min, W. Dengyun. Mater. Sci. Eng. A. 356, 1 (2003). Crossref
10. Y. Estrin, A. Vinogradov. Acta Mater. 61, 782 (2013). Crossref
11. H. K. Lin, J. C. Huang, T. G. Langdon. Mater. Sci. Eng. A. 250, 402 (2005). Crossref
12. S. R. Agnew, O. Duygulu. Int. J. Plast. 21, 1161 (2004). Crossref
13. A. S. Khan, A. Pandey, T. Gnäupel-Herold, R. K. Mishra. Int. J. Plast. 27, 688 (2011). Crossref
14. L. Li, O. Muránsky, E. A. Flores-Johnson, S. Kabra, L. Shen, G. Proust. Mater. Sci. Eng. A. 684, 37 (2017). Crossref
15. H. Wang, P. Wu, S. Kurukuri, M. J. Worswick, Y. Penga, D. Tanga, D. Li. Int. J. Plasticity. 107, 207 (2018). Crossref
16. T. Krajňák, P. Minárik, J. Gubicza, K. Máthis, R. Kužel, M. Janeček. Mater. Charact. 123, 282 (2017). Crossref
17. M. Rund, R. Procházka, P. Konopik, J. Džugan, H. Folgar. In: ICSI 2015 1ST Int. Conf. Struct. Integr. FUNCHAL (Eds. P. M.G. P. Moreira, P. J. Tavares). ELSEVIER SCIENCE, Amsterdam, Netherlands (2015) p. 410.
18. S. W. Xu, N. Matsumoto, K. Yamamoto, S. Kamado, T. Honma, Y. Kojima. Mater. Sci. Eng. A. 509, 105 (2009). Crossref
19. S. M. Liang, R. S. Chen, J. J. Blandin, M. Suery, E. H. Han. Mater. Sci. Eng. A. 480, 365 (2008). Crossref
20. Z. T. Li, X. D. Zhang, M. Y. Zheng, X. G. Qiao, K. Wu, C. Xu, S. Kamado. Mater. Sci. Eng. A. 682, 423 (2017). Crossref
21. D. Xiao, Z. Chen, X. Wang, M. Zhang, D. Chen, Mater. Sci. Eng. A. 660, 166 (2016). Crossref
22. Z. Trojanová, P. Lukáč. Int. J. Mater. Res. 100, 270 (2009). Crossref
23. P. Minárik, R. Král, J. Čížek, F. Chmelík. Acta Mater. 107, 83 (2016). Crossref
24. L. Balogh, R. B. Figueiredo, T. Ungár, T. G. Langdon. Mater. Sci. Eng. A. 528, 533 (2010). Crossref
25. J. Vrátná, M. Janeček, J. Čížek, D. J. Lee, E. Y. Yoon, H. S. Kim, J. Mater. Sci. 48, 4705 (2013). Crossref
26. Y. V. R. K. Prasad, R. W. Armstrong. J. Sci. Ind. Res. 32, 314 (1972).
27. R. W. Armstrong, S. M. Walley. Int. Mater. Rev. 53, 105 (2008). Crossref
28. R. Armstrong, R. M. Douthwaite, I. Codd, N. J. Petch. Philos. Mag. 7, 45 (1962). Crossref
29. C. H. Cáceres, G. E. Mann, J. R. Griffiths, Metall. Mater. Trans. A. 42A, 1950 (2011). Crossref
30. D. V Wilson, J. A. CHapman. Philos. Mag. 8, 1543 (1963). Crossref
31. N. Ono, K. Nakamura, S. Miura. Mater. Sci. Forum, 419 - 422, 195 (2003). Crossref
32. C. H. Cáceres, P. Lukáč. Philos. Mag. 88, 977 (2008). Crossref
33. M. Mabuchi, Y. Chino, H. Iwasaki, T. Aizawa, K. Higashi. Mater. Trans. 42, 1182 (2001).
34. Z. Trojanová, P. Lukáč, K. U. Kainer. Adv. Eng. Mater. 9, 370 (2007). Crossref
35. U. F. Kocks, A. S. Argon, M. F. Ashby. Prog. Mater. Sci. 19, 1 (1975). Crossref
36. Z. Trojanová, Z. Drozd, P. Lukáč, K. Máthis, H. Ferkel, W. Riehemann. Scr. Mater. 42, 1095 (2000). Crossref
37. R. S. Kottada, A. H. Chokshi. Metall. Mater. Trans. A. 38A, 1743 (2007). Crossref
38. J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, K. Maruyama. Mater. Trans. A. 44, 445 (2003).
39. F. F. Lavrentev. Mater. Sci. Eng. 46, 191 (1980). Crossref
40. J. Dosoudil, Z. Trojanová, P. Lukáč, F. Chmelík, F. F. Lavrentev. Kovove Mater. 33, 181 (1995).
41. V. I. Eremin, V. D. Natsik. Scr. Metall. Mater. 26, 47 (1992). Crossref