The thermal effect of deformation during the ECAP processing of the Cu-0.6Cr alloy

D.A. Aksenov, R.N. Asfandiyarov, G.I. Raab, M.P. Baryshnikov show affiliations and emails
Received 10 November 2020; Accepted 10 January 2021;
Citation: D.A. Aksenov, R.N. Asfandiyarov, G.I. Raab, M.P. Baryshnikov. The thermal effect of deformation during the ECAP processing of the Cu-0.6Cr alloy. Lett. Mater., 2021, 11(1) 95-99
BibTex   https://doi.org/10.22226/2410-3535-2021-1-95-99

Abstract

Investigation of deformation heating during ECAP using the Deform-3D complex for mathematical modeling.The work is aimed at solving the problem of determining the magnitude of the thermal effect arising in an alloy of the Cu-Cr system in the process of deformation by the ECAP method. For this, an approach was used based on the analysis of temperature and physical and mechanical characteristics of a unit volume of metal subjected to upsetting carried out on the Gleeble 3500 physical modeling complex. Upsetting was carried out at the degree of accumulated strain of e =1.1 at different rates of deformation (3, 30, 300 mm / s) and initial temperatures (20, 400 and 800°С). Based on the results obtained, a database was created for modeling in the Deform-3D system. The analysis of the heat capacity value is carried out and the contribution of the structural component to the used heat capacity coefficient in the Deform-3D system is estimated. Further, the ECAP process was modeled and the analysis of thermal fields and stress-strain state was carried out. It is shown that at a deformation rate of 30 mm / s, the heating reaches 99°C at room temperature and 63°C and at 400°C. The difference between the heating temperatures, with and without taking into account the heat transfer between the sample and the tooling, does not exceed 8 %.

References (18)

1. R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov. Prog. Mater. Sci. 45, 103 (2000). Crossref
2. R. Z. Valiev, A. P. Zhilyaev, T. G. Langdon. Bulk Nanostructured Materials: Fundamentals and Applications. John Wiley & Sons, USA (2014) 456 p. Crossref
3. V. A. Shabashov, V. V. Sagaradze, A. V. Litvinov. Mat. Sci. Eng. A. 528, 6393 (2011). Crossref
4. V. A. Shabashov, V. V. Sagaradze, A. E. Zamatovskii, V. P. Pilyugin, K. A. Kozlov, A. V. Litvinov, N. V. Kataeva. The Physics of Metals and Metallography. 117 (8), 805 (2016). Crossref
5. I. A. Faizov, R. R. Mulyukov, D. A. Aksenov, S. N. Faizova, N. V. Zemlyakova, K. R. Cardoso, Yu. Zeng. Lett. Mater. 8 (1), 110 (2018). (in Russian) [И. А. Фаизов, Р. Р. Мулюков, Д. А. Аксенов, С. Н. Фаизова, Н. В. Землякова, K. Cardoso, Y. Zeng. Письма о материалах. 8 (1), 110 (2018).]. Crossref
6. G. Purcek, H. Yanar, M. Demirtas, Y. Alemdag, D. V. Shangina, S. V. Dobatkin. Mater. Sci. Eng. A. 649, 114 (2016). Crossref
7. G. Purcek, H. Yanar, D. V. Shangina, M. Demirtas, N. R. Bochvar, S. V. Dobatkin. J. Alloys Compd. 742, 325 (2018). Crossref
8. J. Skiba, A. Dominiak, T. S. Wiśniewski, W. Pachla, M. Kulczyk1, S. Przybysz. Key Eng. Mater. 641, 278 (2015). Crossref
9. B. A. Krivitsky. Forging and stamping production. Material processing by pressure. 6, 36 (2011). (in Russian) [Б. А. Кривицкий. Кузнечно-штамповочное производство. Обработка материалов давлением. 6, 36, 2011.].
10. G. J. Raab, R. Z. Valiev, T. C. Lowe, Yu. T. Zhu. Mater. Sci. Eng. A. 382, 30 (2004). Crossref
11. I. G. Brodova, A. N. Petrova. Scientific and technical statements of SPbSPU. Physics and mathematics. 4 - 1 (182), 213 (2013). (in Russian) [И. Г. Бродова, А. Н. Петрова. Научно-технические ведомости СПбГПУ. Физико-математические науки. 4 - 1 (182), 213 (2013).].
12. Y. H. Kim, R. H. Wagoner. Int. J. Mech. Sei. 29 (3), 179 (1987). Crossref
13. J. Sh. Karamia. Mater. Res. 19 (3), 640 (2016). Crossref
14. H. S. Kim. Mater. Trans. 42 (3), 536 (2001). Crossref
15. Q. X. Pei, B. H. Hu, C. Lu, Y. Y. Wang. Scripta Mater. 49, 303 (2003). Crossref
16. A. P. Zhilyaev. Letters on Materials. 9 (1), 142 (2019). (in Russian) [А. П. Жиляев. Письма о материалах. 9 (1) б 142 (2019).]. Crossref
17. J. G. Croeni, J. S. Howe, H. Katō. High Energy-rate Forging and Extrusion and the Effect on Structure and Properties. U. S. Department of the Interior, Bureau of Mines, USA (1966) 31 p.
18. D. A. Aksenov, R. Asfandiyarov, G. I. Raab, G. B. Isyandavletova. IOP Conf. Ser.: Mater. Sci. Eng. 179, 012001 (2017). Crossref

Similar papers

Funding

1. Russian Science Foundation - 19-19-00432