Effect of long-term natural aging on microstructure and room temperature superplastic behavior of UFG/FG Zn-Al alloys processed by ECAP

M. Demirtas, H. Yanar, G. Purcek show affiliations and emails
Received: 15 September 2018; Revised: 12 October 2018; Accepted: 14 October 2018
Citation: M. Demirtas, H. Yanar, G. Purcek. Effect of long-term natural aging on microstructure and room temperature superplastic behavior of UFG/FG Zn-Al alloys processed by ECAP. Lett. Mater., 2018, 8(4s) 532-537
BibTex   https://doi.org/10.22226/2410-3535-2018-4-532-537

Abstract

ECAP-processed Zn-22Al and Zn-0.3Al alloys were subjected to long-term natural aging up to 1100 days to evaluate the effect of long-term natural aging on their microstructures and superplastic behaviors. Decrease in the maximum elongation of Zn-22Al alloy is quite low comparing to its ECAP-processed condition while Zn-0.3Al alloy loses more than half of its superplastic elongation at the end of the natural aging.Two potential superplastic compositions of Zn-Al alloy systems, Zn-22Al and Zn-0.3Al alloys, were chosen and processed by equal-channel angular pressing/extrusion (ECAP/E) in order to achieve high strain rate (HSR) superplasticity at room temperature (RT). ECAP-processed samples of both alloys were then subjected to long-term natural aging up to 1100 days to evaluate the effect of long-term natural aging on their microstructures and superplastic behaviors. Before natural aging, the maximum elongations to failure at RT were 400% for ultrafine-grained (UFG) Zn-22Al at the strain rate of 5×10-2 s-1 and 1000% for fine-grained (FG) Zn-0.3Al at the strain rate of 1×10-4 s-1. Long-term natural aging did not cause a significant change in the elongation of UFG Zn-22Al alloy with 355% maximum elongation. However, optimum strain rate giving the maximum elongation decreased to 3×10-3 s-1. On the other hand, Zn-0.3Al alloy lost more than half of its superplastic elongation and showed an elongation to failure of 435 % at the end of the natural aging period of 1100 days. Microstructural analyses show that grain boundary corrosion occurred in dilute Zn-0.3Al alloy during the natural aging process. Corroded grain boundaries resulted in cavity nucleation during the tensile tests and some of these cavities attained large sizes and caused premature failure.

References

1. M. Kawasaki, T. G. Langdon. J. Mater. Sci. 42, 1782 (2007). Crossref
2. T. G. Langdon. J. Mater. Sci. 44, 5998 (2009). Crossref
3. T. H. Alden. Trans. AIME. 236, 1633 (1966).
4. R. C. Gifkins. J. Inst. Met. 95, 373 (1967).
5. M. M. I. Ahmed, T. G. Langdon. J. Mater. Sci. Letters. 2, 59 (1983). Crossref
6. K. Edalati, T. Masuda, M. Arita, M. Furui, X. Sauvage, Z. Horita, R. Z. Valiev. Sci. Rep. 7, 2662 (2017). Crossref
7. T. K. Ha, J. R. Son, W. B. Lee, C. G. Park, Y. W. Chang. Mater. Sci. Eng. A. 307, 98 (2001). Crossref
8. M. Demirtas, G. Purcek, H. Yanar, Z. J. Zhang, Z. F. Zhang. Mater. Sci. Eng. A. 644, 17 (2015). Crossref
9. P. Málek, P. Lukáč. Czechoslov. J. Phys. B. 36, 498 (1986).
10. M. Demirtas, G. Purcek, H. Yanar, Z. J. Zhang, Z. F. Zhang. J. Alloy. Compd. 623, 213 (2015). Crossref
11. S. H. Xia, J. Wang, J. T. Wang, J. Q. Liu. Mater. Sci. Eng. A. 493, 111 (2008). Crossref
12. T. Tanaka, K. Makii, A. Kushibe, M. Kohzu, K. Higashi. Scr. Mater. 49, 361 (2003). Crossref
13. T. Uesugi, M. Kawasaki, M. Ninomiya, Y. Kamiya, Y. Takigawa, K. Higashi. Mater. Sci. Eng. A. 645, 47 (2015). Crossref
14. T. Tanaka, K. Higashi. Mater. Trans. 45, 1261 (2004). Crossref
15. P. Kumar, C. Xu, T. G. Langdon. Mater. Sci. Eng. A. 429, 324 (2006). Crossref
16. Y. Huang, T. G. Langdon. J. Mater. Sci. 37, 4993 (2002). Crossref
17. C. F. Yang, J. H. Pan, M. C. Chuang. J. Mater. Sci. 43, 6260 (2008). Crossref
18. M. Demirtas, G. Purcek, H. Yanar, Z. J. Zhang, Z. F. Zhang. Mater. Sci. Eng. A. 620, 233 (2014). Crossref
19. M. Demirtas, G. Purcek, H. Yanar, Z. J. Zhang, Z. F. Zhang. J. Alloy. Compd. 663, 775 (2016). Crossref
20. T. Tanaka, K. Makii, H. Ueda, A. Kushibe, M. Kohzu, K. Higashi. Int. J. Mech. Sci. 45, 1599 (2003). Crossref
21. T. Tanaka, S. W. Chung, L. F. Chaing, K. Makii, A. Kushibe, M. Kohzu, K. Higashi. Mater. Trans. 45, 2542 (2004). Crossref
22. T. Tanaka, S. W. Chung, L. F. Chaing, K. Makii, A. Kushibe, M. Kohzu, K. Higashi. Mater. Sci. Eng. A. 410 - 411, 109 (2005). Crossref
23. N. X. Zhang, M. Kawasaki, Y. Huang, T. G. Langdon. IOP Conf. Ser.: Mater. Sci. Eng. 63, 1 (2014). Crossref
24. M. Demirtas, G. Purcek, H. Yanar, Z. J. Zhang, Z. F. Zhang. Mater. Sci. Forum 320, 838 (2016). Crossref
25. P. Málek, P. Lukáč, J. Suchánek. Czechoslov. J. Phys. B. 37, 729 (1987). Crossref
26. O. A. Kaibyshev. Sverkhplastichnost’ Promyshlennykh Splavov (Superplasticity of Commercial Alloys). Moscow, Metallurgia (1984) 264 p. (in Russian) [О. А. Кайбышев. Сверхпластичность промышленных сплавов. Москва, Металлургия (1984) 264 с.].
27. X. Y. Liu, M. J. Li, F. Gao, S. X. Liang, X. L. Zhang, H. X. Cui. J. Alloy. Compd. 639, 263 (2015). Crossref
28. L. P. Devillers, P. Niessen. Corros. Sci. 16, 243 (1976). Crossref
29. T. Jayakumar, D. K. Bhattacharya, B. Raj, P. Rodriguez. Intergranular corrosion failure in Zn-Al alloy solenoid valve seats, in: K. A. Esakul (Ed.), Handbook of Case Histories in Failure Analysis, 1 ASM International (1992).
30. M. Demirtas, M. Kawasaki, H. Yanar, G. Purcek. Mater. Sci. Eng. A. 730, 73 (2018). Crossref
31. P. Shariat, R. B. Vastava, T. G. Langdon. Acta Metall. 30, 285 (1982). Crossref
32. P. Kumar, C. Xu, T. G. Langdon. Mater. Sci. Eng. A. 410 - 411, 447 (2005). Crossref
33. H. Naziri, R. Pearce, M. R. Brown, K. F. Hale. Acta Metall. 23, 489 (1975). Crossref
34. I. I. Novikov, V. K. Portnoy, T. E. Terentieva. Acta Metall. 25, 1139 (1977). Crossref
35. M. Kawasaki, T. G. Langdon. Mater. Trans. 49, 84 (2008). Crossref
36. M. Kawasaki, T. G. Langdon. Mater. Sci. Eng. A. 503, 48 (2009). Crossref