Effect of deformation temperature on the microstructure and texture evolution in copper during tension

N.Y. Zolotorevsky ORCID logo , V.V. Rybin, E.A. Ushanova, V.N. Perevezentsev show affiliations and emails
Received: 16 August 2023; Revised: 13 September 2023; Accepted: 20 September 2023
Citation: N.Y. Zolotorevsky, V.V. Rybin, E.A. Ushanova, V.N. Perevezentsev. Effect of deformation temperature on the microstructure and texture evolution in copper during tension. Lett. Mater., 2023, 13(4) 362-367
BibTex   https://doi.org/10.22226/2410-3535-2023-4-362-367


The inter-fragment boundary misorientation distributions are close at two temperatures of deformation, except for the high-angle peak associated with the twinning at 0.5Tm (Tm is the melting temperature of copper).Electron backscatter diffraction (EBSD) has been used to study the patterns of grain fragmentation during tensile deformation of copper. The microstructure was examined within the neck region of specimens deformed at temperatures approximately equal to 0.2Tm and 0.5Tm. The misorientations at geometrically necessary boundaries demonstrate the scaling behavior, which suggests that the physical mechanism of grain fragmentation is unchanged over the strains and temperatures examined in the present study. In addition to the dominant cell block structure, regions, where highly misoriented fine fragments and dynamically recrystallized grains are concentrated, have been observed. The distributions of misorientation angles between those fragments / grains are similar for two temperatures, except for the high-angle peak associated with the twinning, which accompanies dynamic recrystallization at 0.5Tm. The difference in crystallographic textures developed at two temperatures was suggested to be caused by the growth of [100] grains at the expense of their more work-hardened [111] neighbors under the conditions of warm deformation.

References (35)

1. V. V. Rybin. Large plastic deformations and fracture of metals. Metallurgy, Moscow (1986). (in Russian) [В. В. Рыбин. Большие пластические деформации и разрушение металлов. Металлургия, Москва (1986) 224 с.].
2. D. A. Hughes, N. Hansen. Acta Mater. 45, 3871 (1997). Crossref
3. R. Z. Valiev, T. G. Langdon. Prog. Mater. Sci. 51, 881 (2006). Crossref
4. R. R. Mulyukov, R. M. Imayev, A. A. Nazarov. J. Mater. Sci. 43, 7257 (2008). Crossref
5. Y. Estrin, A. Vinogradov. Acta Mater. 61, 782 (2013). Crossref
6. A. Bodyakova, M. Tkachev, A. Pilipenko, A. Belyakov, R. Kaibyshev. Materials Science and Engineering: A. 876, 145126 (2023). Crossref
7. N. Hansen, D. Juul Jensen. Mater. Sci. Technol. 27, 1229 (2011). Crossref
8. Z. Yanushkevich, A. Belyakov, R. Kaibyshev. Acta Mater. 82, 244 (2015). Crossref
9. K. Sedighiani, K. Traka, F. Roters, J. Sietsma, D. Raabe, M. Diehl. Acta Materialia. 237, 118167 (2022). Crossref
10. N. Zolotorevsky, V. Rybin, E. Ushanova, N. Ermakova, V. Perevezentsev. Materials Today Communications. 31, 103816 (2022). Crossref
11. B. Bay, N. Hansen, D. A. Hughes, D. Kuhlmann-Wilsdorf. Acta Metall. Mater. 40, 205 (1992). Crossref
12. N. Hansen, X. Huang, G. Winther. Metall Mater Trans A. 42, 613 (2011). Crossref
13. V. V. Rybin, A. A. Zisman, N. Yu. Zolotorevsky. Acta Metall. Mater. 41, 2211 (1993). Crossref
14. C. Thorning, M. A. J. Somers, J. A. Wert. Mater. Sci. Eng. A. 397, 215 (2005). Crossref
15. D. P. Field, A. Alankar. Metall. Mater. Trans. A. 42A, 676 (2011). Crossref
16. R. Wang, C. Lu, K. A. Tieu, A. A. Gazder. Journal of Materials Research and Technology. 18, 508 (2022). Crossref
17. Q. Liu, D. Juul Jensen, N. Hansen. Acta Mater. 46, 5819 (1998). Crossref
18. X. Huang, A. Borrego, W. Pantleon. Mater. Sci. and Eng. A319-321, 237 (2001). Crossref
19. N. Hansen, X. Huang, W. Pantleon, G. Winther. Phil. Mag. 86, 3981 (2006). Crossref
20. X. Huang, G. Winther. Phil. Mag. 87, 5189 (2007). Crossref
21. N. Y. Zolotorevsky, V. V. Rybin, E. A. Ushanova, V. N. Perevezentsev. Letters on Materials. 13 (4), 329 (2023). Crossref
22. F. J. Humphreys, M. Hatherly. Recrystallization and related annealing phenomena, second edition. Elsevier Science Ltd, Pergamon (2004). Crossref
23. A. Belyakov, T. Sakai, H. Miura, K. Tsuzaki. Philosophical Magazine A. 81, 2629 (2001). Crossref
24. C. Kobayashi, T. Sakai, A. Belyakov, H. Miura. Philos. Mag. Lett. 87, 751 (2007).
25. A. Dolzhenko, M. Tikhonova, R. Kaibyshev, A. Belyakov. Metals. 12, 454 (2022). Crossref
26. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J. J. Jonas. Progress in Materials Science. 60, 130 (2014). Crossref
27. A. Ghahremaninezhad, K. Ravi-Chandar. Journal of Solids and Structures. 48, 3299 (2011). Crossref
28. F. Bachmann, R. Hielscher, H. Schaeben. Ultramicroscopy. 111, 1720 (2011). Crossref
29. D. A. Hughes, Q. Liu, D. C. Chrzan, N. Hansen. Acta Mater. 45, 105 (1997). Crossref
30. A. Godfrey, D. A. Hughes. Scripta Materialia. 51, 831 (2004). Crossref
31. N. Yu. Zolotorevsky, V. V. Rybin, A. N. Matvienko, E. A. Ushanova, S. A. Philippov. Materials Characterization. 147, 184 (2019). Crossref
32. N. Afrin, M. Z. Quadir, M. Ferry. Metall. Mater. Trans. A. 46A, 2956 (2015). Crossref
33. A. A. Nazarov, N. A. Enikeev, A. E. Romanov, T. S. Orlova, I. V. Alexandrov, I. J. Beyerline, R. Z. Valiev. Acta Materialia. 54, 985 (2006). Crossref
34. P. Van Houtte, S. Li, M. Seefeldt, L. Delannay. International Journal of Plasticity. 21, 589 (2005). Crossref
35. A. Zisman. Int. J. Eng. Sci. 116, 155 (2017). Crossref

Similar papers


1. Russian Science Foundation - project # 21-19-00366