Microstructure and mechanical properties of a new β-solidifying γ-TiAl alloy in the temperature range of the brittle-ductile transition

D.M. Trofimov ORCID logo , V.M. Imayev, R.M. Imayev show affiliations and emails
Accepted: 26 November 2023
Citation: D.M. Trofimov, V.M. Imayev, R.M. Imayev. Microstructure and mechanical properties of a new β-solidifying γ-TiAl alloy in the temperature range of the brittle-ductile transition. Lett. Mater., 2023, 13(4s) 462-469
BibTex   https://doi.org/10.22226/2410-3535-2023-4-462-469

Abstract

The picture shows the effect of upset forging and heat treatment on yield strength (YS) and ultimate tensile strength (UTS) of the TNZ γ-TiAl alloy in the temperature range of the brittle-ductile transition.A new β-solidifying γ-TiAl alloy with a composition Ti-44Al-6(Nb, Zr, Hf)-0.15B (at.%) (designated as TNZ γ-alloy) has been recently designed. In contrast to the so called TNM γ-TiAl alloy (Ti-43.5Al-4Nb-1Mo-0.1B, at.%) the new alloy was alloyed with Zr and Hf instead of Mo that reduced the β-stabilization and led to formation of the metastable β(β0) phase instead of the stable one. Nevertheless, the new alloy showed good forgeability even at 950°C. The alloy ingot was subjected to upset forging at T = 950°C followed by heat treatments. The applied processing led to formation of refined duplex type structures with different lamellar spacing almost free of the β(β0) phase. The obtained microstructural conditions were characterized and the tensile and creep tests were performed. The mechanical tests showed that with increasing the lamellar constituent and decreasing the lamellar spacing the creep resistance increased and ductility decreased. The onset of the brittle-ductile transition was always observed at T ≥ 850°C that should be assumed as an advantage of the new alloy. This is why the alloy demonstrated higher creep resistance than the TNM alloy in a similar microstructural condition. The obtained results are discussed from the viewpoint of processability, mechanical properties and oxidation resistance of the new alloy.

References (35)

1. B. P. Bewlay, S. Nag, A. Suzuki, M. J. Weimer. Mater. at High Temps. 33, 549 (2016). Crossref
2. Y. W. Kim, S. L. Kim. JOM. 5, 1 (2018). Crossref
3. P. Janschek. Materials Today: Proceedings. 2S, S92 (2015). Crossref
4. R. M. Imayev, V. M. Imayev, M. Oehring, F. Appel. Intermetallics. 15, 451 (2007). Crossref
5. V. M. Imayev, R. M. Imayev, T. I. Oleneva, T. G. Khismatullin. Phys. Met. & Metallogr. 106 (6), 641 (2008). Crossref
6. H. Clemens, W. Wallgram, S. Kremmer, V. Güther, A. Otto, A. Bartels. Adv. Eng. Mater. 10, 707 (2008). Crossref
7. H. Clemens, S. Mayer. Adv. Eng. Mater. 15, 191 (2013). Crossref
8. T. Klein, L. Usategui, B. Rashkova, M. L. No, J. S. Juan, H. Clemens, S. Mayer. Acta Mater. 128, 440 (2017). Crossref
9. M. Burtscher, T. Klein, S. Mayer, H. Clemens, F. D. Fischer. Intermetallics. 114, 106611 (2019). Crossref
10. V. M. Imayev, A. A. Ganeev, D. M. Trofimov, N. Ju. Parkhimovich, R. M. Imayev. Mater. Sci. & Eng. A. 817, 141388 (2021). Crossref
11. L. R. Shaikhutdinova, V. M. Imayev, D. M. Trofimov, R. M. Imayev. Letters on Mater. 12 (4), 343 (2022). Crossref
12. D. M. Trofimov, V. M. Imayev, R. M. Imayev. Intermetallics. 163, 108078 (2023). Crossref
13. F. Appel, J. D. H. Paul, M. Oehring. Gamma Titanium Aluminide Alloys: Science and Technology (Wiley-VCH, Weinheim, 2011). Crossref
14. M. Kastenhuber, B. Rashkova, H. Clemens, S. Mayer. Intermetallics. 80, 1 (2017). Crossref
15. L. Pauling. The Nature of the Chemical Bond, 3rd ed. Cornell University Press, Ithaca (1960).
16. S. Neumeier, J. Bresler, C. Zenk, L. Haußmann, A. Stark, F. Pyczak, M. Göken. Adv. Eng. Mater. 23 (11), 2100156 (2021). Crossref
17. V. M. Imayev, N. Y. Parkhimovich, D. M. Trofimov, R. M. Imayev. J. Mater. Eng. Perform. 31 (7), 5706 (2022). Crossref
18. V. M. Imayev, N. Yu. Parkhimovich, D. M. Trofimov, R. M. Imayev. Letters on Materials. 11 (4), 524 (2021). (in Russian) [В. М. Имаев, Н. Ю. Пархимович, Д. М. Трофимов, Р. М. Имаев. Письма о материалах. 11 (4), 524 (2021).]. Crossref
19. T. T. Cheng, M. R. Willis, I. P. Jones. Intermetallics. 7, 89 (1999). Crossref
20. S. Bolz, M. Oehring, J. Lindemann, F. Pyczak, J. Paul, A. Stark, T. Lippmann, S. Schrüfer, D. Roth-Fagaraseanu, A. Schreyer, S. Weiß. Intermetallics. 58, 71 (2015). Crossref
21. T. Schmoelzer, K. D. Liss, G. A. Zickler, et al. Intermetallics. 18 (8), 1544 (2010). Crossref
22. E. Schwaighofer, H. Clemens, S. Mayer, et al. Intermetallics. 44, 128 (2014). Crossref
23. S. Mitao, L. A. Bendersky. Acta Mater. 45, 4475 (1997). Crossref
24. W. Schillinger, H. Clemens, G. Dehm, A. Bartels. Intermetallics. 10, 459 (2002). Crossref
25. V. Imayev, R. Imayev, A. Kuznetsov. Scripta Mater. 49, 1047 (2003). Crossref
26. L. Cha, H. Clemens, G. Dehm. Int. J. Mater. Res. Former. Z. Met. 102, 703 (2011). Crossref
27. J. Guyon, A. Hazotte, F. Wagner, E. Bouzy. Acta Mater. 103, 672 (2016). Crossref
28. G. W. Qin, K. Oikawa, Z. M. Sun, et al. Mater. Trans. A. 32, 1927 (2001). Crossref
29. P. Zieba, W. Gust. Z. Met. 92, 645 (2001). Crossref
30. R. M. Imayev, V. M. Imayev, M. Oehring, F. Appel. Metal. Mater. Trans. A. 36, 859 (2005). Crossref
31. X. Wu, A. Huang, D. Hu, M. H. Loretto. Intermetallics. 17, 540 (2009). Crossref
32. M. C. Galetz, A. S. Ulrich, C. Oskay, D. Faehsing, N. Laska, U. Schulz, M. Schuetze. Intermetallics. 123, 106830 (2020). Crossref
33. L. Mengis, A. S. Ulrich, P. Watermeyer, C. H. Liebscher, M. C. Galetz. Corrosion Science. 178, 109085 (2021). Crossref
34. H. A. Lipsitt, D. Shechtman, R. E. Schafrik. Met. Trans. 6A, 1991 (1975). Crossref
35. V. M. Imayev, R. M. Imayev, G. A. Salishchev. Intermetallics. 8, 1 (2000). Crossref

Similar papers

Funding