Effect of hot forging on formation of a fine-grained structure and mechanical properties of a powder metallurgy nickel base superalloy

R.I. Zainullin, S.K. Mukhtarov, A.A. Ganeev, R.V. Shakhov ORCID logo , V.M. Imayev show affiliations and emails
Received 15 September 2023; Accepted 26 October 2023;
Citation: R.I. Zainullin, S.K. Mukhtarov, A.A. Ganeev, R.V. Shakhov, V.M. Imayev. Effect of hot forging on formation of a fine-grained structure and mechanical properties of a powder metallurgy nickel base superalloy. Lett. Mater., 2023, 13(4s) 414-419
BibTex   https://doi.org/10.22226/2410-3535-2023-4-414-419


BSE images of HIP superalloy VV751P and after forging and heat treatment.The Russian powder metallurgy (PM) superalloy VV751P (Ni-10(Al, Ti, Nb)-34.5(Co, Cr, Mo, W, V, Hf)-0.057(C, B) (wt.%) was studied in the present work. The initial material was supplied in the HIPed condition. The average γ grain size in the initial HIPed condition was d ≈ 32 µm, the volume fraction of the γ' (Ni3(Al, Ti, Nb)) phase was about 65 %. Primary γ' phase was located along γ grain boundaries forming a network. Any additional phases, such as oxides or topologically close-packed phases were not detected. Small cylindrical samples were prepared from the HIPed material and subjected to isothermal single-step compression under different temperature / strain rate conditions (T =1100 –1175°C and έ = 5 ×10−4 – 10−2 s−1), followed by heat treatment. Microstructural examination revealed that continuous dynamic recrystallization occurred during hot compression. Compression tests were used to develop processing providing formation of a homogeneous and fine-grained microstructure with an average γ grain size less than 10 µm and near free of the prior boundary precipitates. Using developed processing the workpieces with a fine-grained microstructure were produced, from which the specimens for tensile tests were prepared. The tensile properties were found to be appreciably higher than those obtained in the HIPed condition.

References (32)

1. R. C. Reed. The superalloys: Fundamentals and Applications. Cambridge University Press (2006) 372 p. Crossref
2. L. B. Ber, S. V. Rogozhkin, A. A. Khomich, A. G. Zaluzhnyi. Phys. Metals Metallogr. 123, 163 (2022). Crossref
3. J. Radavich, D. Furrer. Superalloys. 2004, 381 (2008). Crossref
4. J. R. May, M. C. Hardy, M. R. Bache, D. D. Kaylor. Adv. Mat. Res. 278, 265 (2011). Crossref
5. C. Qiu. Net-Shape Hot Isostatic Pressing of a Nickel-Based Powder Superalloy: Ph. D. thesis. University of Birmingham, U. K. (2010) 295 p.
6. G. Raisson, J. Y. Guédou, D. Guichard, J. M. Rongvaux. Adv. Mat. Res. 278, 277 (2011). Crossref
7. J. W. Wang, Q. S. Wei, G. C. Liu, Y. K. He, Y. S. Shi. Adv. Mat. Res. 189 - 193, 2935 (2011). Crossref
8. R. Baccino, F. Moret, F. Pellerin, D. Guichard, G. Raisson. Mater. Des. 21, 345 (2000). Crossref
9. J. H. Moll, J. J. Conway. Superalloys. 2000. 135 (2000). Crossref
10. Q. Bai, J. Lin, G. Tian, J. Zou, T. A. Dean. J. Powder Metall. Min. 4, 127 (2015). Crossref
11. C. Qiu, X. Wu, J. Mei, P. Andrews, W. Voice. J. Alloys Compd. 578, 454 (2013). Crossref
12. H. V. Atkinson, S. Davies. Metall. Mater. Trans. A. 31, 2981 (2000). Crossref
13. G. A. Rao, M. Srinivas, D. S. Sarma. Mater. Sci. Eng. A. 435 - 436, 84 (2006). Crossref
14. G. A. Rao, K. S. Prasad, M. Kumar, M. Srinivas, D. S. Sarma. Characterisation of hot isostatically pressed nickel base superalloy Inconel 718. Mater. Sci. Technol. 19, 313 (2003). Crossref
15. N. G. Ingesten, R. Warren, L. Winberg. High Temperature Alloys for Gas Turbines. 1982, 1013 (1982). Crossref
16. C. L. Qiu, M. M. Attallah, X. H. Wu, P. Andrews. Mater. Sci. Eng. A. 564, 176 (2013). Crossref
17. L. Chang, W. Sun, Y. Cui, R. Yang. 8th International Symposium on Superalloy 718 and Derivatives. 447 (2014). Crossref
18. G. A. Rao, M. Srinivas, D. S. Sarma. Mater. Sci. Technol. 20, 1161 (2004). https://doi.org/. Crossref
19. L. Chang, W. Sun, Y. Cui, R. Yang. Mater. Sci. Eng. A. 682, 341 (2017). Crossref
20. D. Locq, P. Caron. Journal Aerospace Lab. 3, 3 (2011). HAL Id: hal-01183624.
21. F. J. Humphreys. J. Microsc. 195, 170 (1999). Crossref
22. Sh. Kh. Mukhtarov, D. A. Karyagin, A. V. Logunov, A. A. Ganeev, R. I. Zainullin, R. V. Shakhov, V. M. Imayev. Lett. Mater. 12 (4s), 457 (2022). Crossref
23. G. S. Garibov, N. M. Grits, A. V. Vostrikov, E. A. Fedorenko, A. M. Kazberovich. Patent RU 2453398 Method for production of product out of alloy type “VV751P” with high strength and heat resistance. 14.06.2011. 4 p.
24. V. Imayev, S. Mukhtarov, K. Mukhtarova, A. Ganeev, R. Shakhov, N. Parkhimovich, A. Logunov. Metals. 10 (12), 1606 (2020). Crossref
25. D. M. Collins, B. D. Conduit, H. J. Stone, M. C. Hardy, G. J. Conduit, R. J. Mitchell. Acta Mater. 61, 3378 (2013). Crossref
26. K. Alvarado, I. Janeiro, S. Florez, B. Flipon, J.-M. Franchet, D. Locq, C. Dumont, N. Bozzolo, M. Bernacki. Metals. 11, 1921 (2021). Crossref
27. N. D’Souza, W. Li, C. Argyrakis, G. D. West, C. D. Slater. Metall. Mater. Trans. A. 50, 4205 (2019). Crossref
28. A. A. Ganeev, V. A. Valitov, F. Z. Utyashev, V. M. Imaev. Physics of Metals and Metallography. 120 (4), 410 (2019). Crossref
29. Sh. Kh. Mukhtarov, V. M. Imayev, A. V. Logunov, Yu. N. Shmotin, A. M. Mikhailov, R. A. Gaisin, R. V. Shakhov, A. A. Ganeev, R. M. Imayev. Mater. Sci. Technol. 36, 1605 (2019). Crossref
30. R. J. Mitchell, J. A. Lemsky, R. Ramanathan, H. Y. Li, K. M. Perkins, L. D. Connor. Superalloys. 2008, 347 (2008). Crossref
31. R. Jiang, Y. C. Wang, L. C. Zhang, Y. Chen, H. Zhang, Z. B. Wang, Y. D. Song. Int. J. Fatigue. 172, 107647 (2023). Crossref
32. T. P. Gabb, J. Telesman, P. T. Kantzos, K. O’Connor. Characterization of the temperature capabilities of advanced disk alloy ME3. NASA / TM-2002-211796 (2002) 51 p.

Similar papers


1. State Assignment of the Institute for Metals Superplasticity Problems of the Russian Academy of Sciences - 122011900470-7