Magnetic hysteresis properties of hard magnetic powder of the Fe-27Cr-10Co-1Si-1Ti alloy

I.M. Milyaev, M.I. Alymov, D.M. Abashev, I.N. Bouriakov, V.S. Yusupov, V.A. Zelenskiy, N.V. Laysheva show affiliations and emails
Received 11 April 2019; Accepted 16 June 2019;
This paper is written in Russian
Citation: I.M. Milyaev, M.I. Alymov, D.M. Abashev, I.N. Bouriakov, V.S. Yusupov, V.A. Zelenskiy, N.V. Laysheva. Magnetic hysteresis properties of hard magnetic powder of the Fe-27Cr-10Co-1Si-1Ti alloy. Lett. Mater., 2019, 9(3) 349-353
BibTex   https://doi.org/10.22226/2410-3535-2019-3-349-353

Abstract

Best magnetic hysteresis properties of Fe-27Cr-10Co-1Si-1Ti hard magnetic alloyAs part of the program of development of low-grade (7-12 wt.% of cobalt) of deform-able hard magnetic alloys of the Fe-Cr-Co system , magnetic hysteresis properties of the hard magnetic alloy Fe-27Cr-10Co-1Si-1Ti (27Х10КСТ) have been studied. Previously we showed that the triple-hard magnetic alloy Fe-27Cr-10Co had very good hysteretic magnetic properties: residual induction of Br to 1.35 T, coercive force HсВ up to 45 kA/m and maximum energy product (BH)max up to 42 kJ/m3. It was assumed that additional doping of this triple hard magnetic alloy with silicon and titanium would increase its magnetic hysteresis properties. When optimizing the heat treatment of the alloy under study, a сentral composite (sequential) plan was used, the most suitable for describing an almost stationary region, which cannot be described by a linear approximation. The selected plan is rotatable and randomized. After optimal heat treatment, the optimal values of Br 1.3 T, HcB 43.5 kA/m, (BH)max 42.2 kJ/m3 were estimated using the program Statgraphics Centurion XVI. The experimentally obtained values of Br, HcB and (BH) max are 1.34 T, 43.65 kA/m and 39.4 kJ/m3, respectively. The obtained magnetic properties on the low-cobalt hard magnetic alloy 26H10KST do not exceed the similar properties of triple hard magnetic alloy, but nevertheless exceed the analogical properties of the industrial Fe-Cr-Co alloy 25H15KA on average by 10-15 % with a content of cobalt one third less. It is shown that to obtain the optimal values of Br, HcB and (BH)max, various optimal thermal treatments are required.

References (21)

1. S. Jin, G. Y. Chin, B. C. Wonsiewicz. IEEE Transactions on Magnetics, MAG-16. 1, 139 (1980). Crossref
2. M. L. Green, R. C. Sherwood, G. Y. Chin, J. H. Wernick, J. Bernardini. IEEE Transactions on Magnetics, MAG-16. 5, 1053 (1980). Crossref
3. M. L. Green, R. C. Scherwood, C. C. Wong. Journal of Applied Physics. 53 (3), 2398 (1982). Crossref
4. S. Jin, N. V. Gayle. IEEE Transactions on Magnetics. . MAG-16. 3, 526 (1980). Crossref
5. T. S. Chin, T.-H. Chen, C.-Y. Chen. Journal of Magnetism and Magnetic Materials. 50, 214 (1985). Crossref
6. I. M. Milyaev, D. M. Abashev, I. M. Alymov, I. N. Bouriakov, V. S. Yusoupov, V. A. Zelensky. MITOM. 3 (765), 17 (2019). (in Russian) [И. М. Миляев, Д. М. Абашев, М. И. Алымов, И. Н. Буряков, В. С. Юсупов, В. А. Зеленский. МИТОМ. 3 (765), 17 (2019).].
7. Patent US № 3 806 336, 27.04.1974. Magnetic Alloys. Int. Cl. C22c 39 / 16; H01F 1 / 0. US Cl. 75 - 122.
8. D. M. Abashev, I. M. Milyaev, M. I. Alymov, I. N. Bouryakov, V. S. Yusupov, V. A. Zelensky, G. Yu. Lazorenko. Naukoemkie technologii. 19 (7), 49 (2018). (in Russian) [Д. М. Абашев, И. М. Миляев, М. И. Алымов, И. Н. Буряков, В. С. Юсупов, В. А. Зеленский, Г. Ю. Лазоренко. Наукоёмкие технологии. 19 (7), 49 (2018).].
9. D. M. Abashev, I. M. Milyaev, M. I. Alymov, I. N. Bouryakov, V. S. Yusupov, V. A. Zelensky, N. V. Laysheva. Russian Metallurgy (Metally). 11, 1041 (2018). (in Russian) [Д. М. Абашев, И. М. Миляев, М. И. Алымов, И. Н. Буряков, В. С. Юсупов, В. А. Зеленский, Н. В. Лайшева. Металлы. 11, 1041 (2018).]. Crossref
10. I. M. Milyaev, M. I. Alymov, I. N. Bouriakov, V. S. Yusoupov, D. M. Abashev. Conf. Series materials Science and Engineering. 347, 012053 (2018). Crossref
11. I. M. Milyaev, V. S. Yusoupov, S. I. Stelmashok, A. I. Milyaev. Pribory. 7, 34 (2016). (in Russian) [И. М. Миляев, В. С. Юсупов, С. И. Стельмашок, А. И. Миляев. Приборы. 7, 34 (2016).].
12. I. M. Milyaev, D. M. Abashev, M. I. Alymov, V. S. Yusupov, I. N. Bouryakov, V. A. Zelensky. Pribory. 3, 30 (2019). (in Russian) [И. М. Миляев, Д. М. Абашев, М. И. Алымов, В. С. Юсупов, И. Н. Буряков, В. А. Зеленский. Приборы. 3, 30 (2019).
13. I. M. Milyaev, S. Yu. Ostanin. Izvestiya RAS. Sektsiya fizicheskaya. 82 (3), 244 (2018). (in Russian) [И. М. Миляев, С. Ю. Останин. Известия РАН. Серия физическая. 82, 244 (2018).].
14. I. M. Milyaev, S. Yu. Ostanin, T. Shumei, V. Go. Izvestiya RAS. Sektsiya fizicheskaya. 82 (8), 1025 (2018). (in Russian) [И. М. Миляев, С. Ю. Останин, Ц. Шумей, В. Го. Известия РАН. Серия физическая. 82 (8), 1025 (2018).].
15. F. Vodopivec, J. Zvokelj, B. Breskvar, D. Gnidovec, A. Rodie, M. Torkar. Z. Metalkunde. 85 (3), 207 (1994).
16. I. M. Milyaev, M. I. Alymov, V. S. Yusupov, V. A. Zelenskiy, A. B. Ankudinov, A. I. Milyaev. Poroshkovaya metallurgiya i funkstionalnye pokrytiya. 4, 54 (2011). (in Russian) [И. М. Миляев, М. И. Алымов, В. С. Юсупов, В. А. Зеленский, А. Б. Анкудинов, А. И. Миляев. Порошковая металлургия и функциональные покрытия. 4, 54 (2011).].
17. T. Katoh, K. Kusaka, T. Furuga. Elec. Furnace Steel. 2, 113 (1982).
18. H. Kaneko, M. Homma, K. Nakamura, H. Miura. IEEE Transactions on Magnetics. 8(3), 347 (1972). Crossref
19. S. Sugimoto, M. Okada, Y. Ohtani, T. Tanaka, M. Homma. J. Appl. Phys. 57 (1), 4167 (1985). Crossref
20. Yu. I. Kozlov, Z. A. Rakitina, A. A. Babanov, I. V. Belik. MITOM. 9, 41 (1983). (in Russian) [Ю. А. Козлов, З. А. Ракитина, А. А. Бабанов, И. В. Белик. МИТОМ. 9, 41 (1983).].
21. L. M. Magat, G. V. Ivanova, T. P. Lapina, L. V. Solina, Ya. S. Shur. FMM. 4 (1), 55 (1975). (in Russian) [Л. М. Магат, Г. В. Иванова, Т. П. Лапина, Л. В. Солина, Я. С. Шур. ФММ. 40 (1), 55 (1975).].

Similar papers

Funding

1. Russian Foundation for Basic Research - state assignment No. 075‑00746‑19‑00 (grant 18‑58-53047 GFEN_a)