Microstructure and mechanical properties of hetero-designed Ti-25Nb-25Zr alloy fabricated by powder metallurgy route

B. Sharma ORCID logo , K. Nagano, M. Kawabata, K. Ameyama show affiliations and emails
Received 04 June 2019; Accepted 12 September 2019;
Citation: B. Sharma, K. Nagano, M. Kawabata, K. Ameyama. Microstructure and mechanical properties of hetero-designed Ti-25Nb-25Zr alloy fabricated by powder metallurgy route. Lett. Mater., 2019, 9(4s) 511-516
BibTex   https://doi.org/10.22226/2410-3535-2019-4-511-516


Heterogeneous structured compacts (Harmonic design) exhibited a good strength and optimum ductility as compared to the homogeneous structured compacts.The harmonic structured (HS) materials have a heterogeneous microstructure consisting of bimodal grain size together with a controlled and specific topological distribution of ultra-fine grains (“Shell”) and coarse-grains (“Core”) areas. They have excellent strength combined with good ductility due to their unique heterogeneous “three-dimensionally (3D) gradient microstructure”, the two properties being rather an antagonist from the classical metallurgy point of view. In the present study, HS Ti-25Nb-25Zr alloy (mass %), compacts were successfully fabricated by a powder metallurgy method consisting of controlled mechanical milling (MM) of pre-alloyed Ti-25Nb-25Zr (TNZ) powder, followed by Spark Plasma Sintering. The MM leads to the severe plastic deformation at the powder particle surface. As a result, bimodal grains, with ultra-fine grains at the particle surface, and coarse-grains at the powder core, was achieved. After sintering of MM powder, the TNZ compacts with HS was achieved. The HS TNZ exhibited higher strength together with acceptable ductility as compared to the homogeneous microstructured TNZ alloy fabricated by SPS of as-received TNZ powder. The systematic characterization was done using Scanning Electron Microscope (SEM) equipped with a backscattered detector (BSE), Electron Back Scatter Diffraction (EBSD) and Energy Dispersive X-ray spectroscopy (EDX), XRD, and tensile testing. It is shown that different powder conditions led to significantly different microstructures. Also, it was observed that the high ductility and low strength was achieved for the compact prepared from as-received powder whereas a good combination of strength and ductility was achieved for the specimen prepared from MM of as-received powder.

References (30)

1. Y. Fukuzumi, T. Wada, H. Kato. Surface Improvement for Biocompatibility of Ti-6Al-4V by Dealloying in Metallic Melt. In: Interface Oral Health Science 2014 (ed. by K. Sasaki, O. Suzuki, N. Takahashi). Springer, Tokyo (2015) pp 93 - 101. Crossref
2. M. Niinomi. Science and Technology of advanced materials. 4, 445 (2003). Crossref
3. J. Y. Rho, T. Y. Tsui, G. M. Pharr. Biomaterials. 18 (20), 1325 (1997). Crossref
4. H. C. Hsu, S. C. Wu, Y. C. Sung, W. F. So. J. Alloys Compd. 488, 279 (2009). Crossref
5. M. V. Oliveira, L. C. Pereira, C. A. A. Cairo. Mater. Res. 5, 269 (2002). Crossref
6. E. D. Spoerke, N. G. Murray, H. Li, L. C. Brinson, D. C. Dunand, S. I. Stupp. Acta Biomaterialia. 1 (5), 523 (2005). Crossref
7. M. Geetha, A. K. Singh, R. Asokamani, A. K. Gogia. Pro. in Mat. Sci. 54, 397 (2009). Crossref
8. H. H. Huang, C. P. Wu, Y. S. Sun, H. M. Huang, T. H. Lee. Thin Solid Films. 549, 87 (2013). Crossref
9. H. H. Huang, C. P. Wu, Y. S. Sun, W. E. Yang, M. C. Lin, T. S. Lee. Surface and coating technology. 259, 206 (2014). Crossref
10. J. H. Chang, J. F. Liu, Y. S. Sun, C. P. Wu, H. H. Huang, Y. Han. Journal of Alloys and Compounds. 707, 220 (2017). Crossref
11. S. K. Vajpai, B. Sharma, M. Ota, K. Ameyama. Materials Scienceand Engineering: A. 736, 323 (2018). Crossref
12. M. Hayakawa, O. Kanou, N. Fukada. J. Japanese Society of Powder Metallurgy. 63 (7), 497 (2016). Crossref
13. G. Lütjering, J. C. Williams. Titanium, 2nd edn. Springer Berlin Heidelberg, New York (2007) pp. 86-99.
14. A. Couret, G. Molénat, J. Galy, M. Thomas. Intermetallics. 16 (9), 1134 (2008). Crossref
15. L. Lye, Z. G. Liu, K. R. Prasad, M. X. Quan, M. U. Memoto, Z. Q. Hu. MSE-A. 241 (1 - 2), 290 (1998). Crossref
16. B. Liu, S. Huang, L. Chen, J. V. Humbeeck, J. Vleugels. Mat. Letters. 191, 89 (2017). Crossref
17. M. A. Hussein, C. Suryanarayana, N. Al-Aqeeli. Mat. and Design. 87, 693 (2015). Crossref
18. S. Kikuchi, H. Akebono, A. Ueno, K. Ameyama. Powder Technology. 330, 349 (2018). Crossref
19. S. Kikuchi, Y. Hayami, T. Ishiguri, B. Guennecc, A. Ueno, M. Ota, K. Ameyama. MSEA. 687, 269 (2017). Crossref
20. M. O. Kawabata, K. Ameyama. Journal of the JSTP. 58 (678), 563 (2017). Crossref
21. F. H. Froes Sam. Powder metallurgy of titanium alloys In: Advances in Powder Metallurgy. Woodhead Publishing (2013) pp. 202 - 240. Crossref
22. H. Fujiwara, H. Inomoto, K. Ameyama. Tetsu-to-Hagané. 91, 839 (2005). Crossref
23. M. Umemoto, K. Tsuchiya, Z.-G. Liu. J. Jpn. Soc. Powder Metallurgy. 50, 189 (2003). Crossref
24. S. K. Vajpai, M. Ota, T. Watanabe, R. Maeda, T. Sekiguchi, T. Kusaka, K. Ameyama. Metallurgical and Materials Transactions A. 46 A, 903 (2015). Crossref
25. D. L. Zhang. Progress in Materials Science. 49, 537 (2004). Crossref
26. K. Williamson, W. H. Hall. Acta Metall. 1(1), 22 (1953). Crossref
27. M. Niinomi, T. Akahori. Expert Rev. Med. Devices. 7, 481 (2010). Crossref
28. F. W. Crooke, J. E. Lemons, B. D. Ratner. Properties of Materials. In: Biomaterials Science. Academic Press, San Diago (1996) pp. 11 - 35. Crossref
29. K. Wang. Materials Sci. Eng. A. 213 (1-2), 134 (1996). Crossref
30. S. Ozan, J. Lin, Y. Li, Y. Zhang, K. Munir, H. Jiang, C. Wen. Journal of Mechanical Behavior of Biomedical Materials. 78, 224 (2018). Crossref

Similar papers


1. “Scientific Research on Innovative Areas on High Entropy Alloys” through the grant number 18H05455 - JSPS KAKENHI Grant Number JP18K18962