The fraction of HAB - 87% The fraction of HAB - 88% The fraction of HAB - 78% Frequency, % Frequency, % Frequency, % nn(111111) 20 30 20 30 20 30 Misorientation, degree Misorientation, degree Misorientation, degree b а С The fraction of HAB - 77% The fraction of HAB - 86%The fraction of HAB - 77%Frequency, % Frequency, % Frequency, % 30 40 20 30 Misorientation, degree Misorientation, degree Misorientation, degree d e f

Supplementary Material

Fig. S1. Misorientation-angle distributions for grain/interphase boundaries corresponding to the EBSD maps shown in Fig. 4: $T=1125^{\circ}$ C, $\epsilon=10^{-2}$, 5×10^{-3} and 5×10^{-4} s⁻¹ (d – f, respectively). HAB designates high-angle grain/interphase boundaries.

Fig. 52. BSE images obtained from the central parts of samples of the VV751P superalloy subjected to preliminary annealing and hot compression to a strain of $\epsilon \approx 75\%$: $T=1125^{\circ}$ C, $\epsilon = 10^{-2} \text{ s}^{-1}$ (a), $T=1150^{\circ}$ C, $\epsilon = 10^{-2} \text{ s}^{-1}$ (b).

Fig. S3. (Color online) Normal-direction EBSD maps (inverse-pole-figures) (a, b) and corresponding misorientation-angle distributions for grain/interphase boundaries (c, d) obtained from central parts of samples of the VV751P superalloy subjected to homogenization, hot compression and subsequent recrystallization annealing: $T=1125^{\circ}$ C, $\epsilon=10^{-2} \text{ s}^{-1}$ ($\epsilon\approx75\%$) and annealing at 1100°C (a, c); $T=1150^{\circ}$ C, $\epsilon=10^{-2} \text{ s}^{-1}$ ($\epsilon\approx75\%$) and annealing at 1125°C (b, d). The forging axis is vertical, high- and low-angle grain/interphase boundaries are indicated by black and white lines, respectively.

Fig. S4. (Color online) KAM maps corresponding to Fig. 4a (a) and S3a (b): $T=1125^{\circ}$ C, $\epsilon=10^{-2}$ s⁻¹ ($\epsilon\approx75\%$) (a), $T=1125^{\circ}$ C, $\epsilon=10^{-2}$ s⁻¹ ($\epsilon\approx75\%$) and annealing at 1100°C (b). The green color shows not completely recrystallized areas with a higher dislocation density.

Processing route ¹	έ, s ⁻¹	The average size of γ grains/primary γ' phase, μm		The fraction of HAB, %	
		without A ²	after A	without A	after A
$HIP + H + C(1125^{\circ}C)$	10 ⁻²	2.1	2.5	87	89
HIP + H + C(1150°C)	10-2	2.5	3.6	77	89
HIP + H + C(1125°C)	5×10 ⁻³	2.6	2.9	88	83
HIP + H + C(1150°C)	5×10 ⁻³	3.3	3.7	86	85
$HIP + H + C(1125^{\circ}C)$	5×10^{-4}	2.7	2.9	78	82
HIP + H + C(1150°C)	5×10 ⁻⁴	3.5	3.9	77	77

Table S1. The average sizes of γ grains/primary γ' phase and the fraction of high-angle grain/interphase boundaries (HAB) depending on the processing conditions.

 $^1\,\rm HIP-hot$ isostatic pressing, H - homogenization annealing, C - hot compression

 2 A — post-deformation annealing