TEXTURE FORMATION UNDER ROLLING AND PRIMARY RECRYSTALLIZATION IN Fe86Ga14 ALLOY

V.A. Milyutin, I.V. Gervasyeva show affiliations and emails
Received 21 June 2018; Accepted 23 July 2018;
This paper is written in Russian
Citation: V.A. Milyutin, I.V. Gervasyeva. TEXTURE FORMATION UNDER ROLLING AND PRIMARY RECRYSTALLIZATION IN Fe86Ga14 ALLOY. Lett. Mater., 2018, 8(3) 341-345
BibTex   https://doi.org/10.22226/2410-3535-2018-3-341-345

Abstract

Using different cold-rolled and annealing regimes different primary recrystallization texture in Fe-14%Ga was obtained. Values of magnetostriction decreased in conformity with the decrease of texture components containing easy magnetization directions.Fe-Ga alloys possess the increased magnetostriction in comparison with the traditional magnetostrictive materials Fe-Co and Fe-Al and have a number of advantages before magnetostrictive materials based of rare earths. In literature, much attention is paid to structure of Fe81Ga19, as this alloy possesses the greatest magnetostriction in one-phase area. Important condition for achievement of the best functional properties in this material is creation of certain crystallographic texture. However, the substantial difficulty at manufacture of samples and products consists in a high brittleness of alloy at such content of gallium, for this reason the features of formation of crystallographic texture at deformation and recrystallization in this alloy are studied poorly. In this work, the attempt to study influence of various modes of rolling and annealing on structure and magnetic properties of Fe-Ga alloy with the smaller content of Ga is made. The structure and texture of primary recrystallization was studied by means of an electron back-scattering diffraction. Besides field dependences of magnetization were measured, and the amount of grains with the direction of easy magnetization in different samples was estimated by the value of magnetic induction at a defined value of magnetic field on a magnetization curve. The values of magnetostriction increased with increase of volume fraction of the components including the direction of easy magnetization of iron-gallium alloy. Absolute values of magnetostriction did not exceed 50 ppm that is at the level of values for traditional materials, but does not correspond to advantages in magnetostrictive behavior of iron-gallium alloys. Plastic deformation by hot and, especially cold rolling causes great difficulties in connection with a high brittleness of alloy even with the lower value of gallium concentration. Therefore, it is necessary to find new methods of a plastic deformation of alloy or to add the chemical elements improving plastic properties of material.

References (19)

1. A. E. Clark, J. B. Restorff, M. Wun-Fogle, T. A. Lograsso, D. L Schlagel. IEEE Transactions on Magnetics. 36, 3238 (2000). Crossref
2. Q. Xing, Y. Du, R. J. McQueeney, T. A. Lograsso. Acta Materialia. 56, 4536 (2008). Crossref
3. S. Na, A. B. Flatau. Scripta Materialia. 66, 307 (2012). Crossref
4. R. A. Kellogg, A. B. Flatau, A. E. Clark, M. Wun-Fogle, T. A. Lograsso, J. Appl. Phys. 91, 7821 (2002). Crossref
5. J. Atulasimha, A. B. Flatau. Smart Mater. Struct. 20, 043001 (2011). Crossref
6. R. A. Kellogg. Development and modeling of iron−gallium alloys. PhD Thesis Engineering Mechanics, Iowa State University, Ames, Iowa (2003).
7. T. V. Jayaraman, N. Srisukhumbowornchai, S. Guruswamy, M. L. Free. Corros. Sci. 49, 4015 (2007). Crossref
8. I. S. Golovin, A. Rivière. Intermetallics. 19, 453 (2011). Crossref
9. I. S. Golovin, J. Cifre. Journal of Alloys and Compounds. 584, 322 (2014). Crossref
10. A. E. Clark, M. Wun-Fogle, J. B. Restorff, T. A. Lograsso, J. R. Gullen. IEEE Transaction on magnetics. 37, 2678 (2001). Crossref
11. A. E. Clark, K. B. Hathaway, M. Wun-Fogle, J. B. Restorff, T. A. Lograsso, M. Keppens, G. Petculescu, R. A. Taylor. J. Appl. Phys. 93, 8621 (2003). Crossref
12. Q. Xing, T. A. Lograsso. Scripta Materialia. 65, 359 (2011). Crossref
13. J. Zang, T. Ma, M. Yan. Physica B. 405, 3129 (2010). Crossref
14. C. Mudivarthi, M. Laver, J. Cullen, A. B. Flatau, V. Wuttig, Journal of Applied Physics. 107, 09A957 (2010). Crossref
15. M. V. Petrik, O. I. Gorbatov, Yu. N. Gornostyrev, JETP Letters. 98, 809 (2014). (in Russian) [М. В. Петрик, О. И. Горбатов, Ю. Н. Горностырев. Письма в ЖЭТФ. 98(12), 912 (2013).].
16. A. Sun, J. Liu, C. Jiang, J. Mater. Sci. 49, 4565 (2014). Crossref
17. J. Li, X. Gao, J. Zhu, J. Li, M. Zhang. Journal of Alloys and Compounds. 484, 203 (2009). Crossref
18. V. A. Milyutin, I. V. Gervasyeva. Letters on Materials. 8(1), 59 (2018). (in Russian) [В. А. Милютин, И. В. Гервасьева. Письма о материалах. 8(1), 59 (2018).]. Crossref
19. M. Z. Salih, M. Uhlarz, F. Pyczak, H.-G. Brokmeier, B. Weidenfeller, N. Al-hamdany, W. M. Gan, Z. Y. Zhong, N. Schell. Journal of Magnetism and Magnetic Materials. 381, 350 (2015). Crossref

Cited by (6)

1.
V. Palacheva, V. Cheverikin, E. Zanaeva, F. Emeis, V. Korovushkin, H. Wang, C. Jiang, I. Golovin. LOM. 9(1), 51 (2019). Crossref
2.
I. S. Golovin, V. V. Palacheva, A. K. Mohamed, A. M. Balagurov. Phys. Metals Metallogr. 121(9), 851 (2020). Crossref
3.
V. A. Milyutin, R. Bures, M. Faberova, F. Kromka. J. of Materi Eng and Perform. (2022). Crossref
4.
V. A. Milyutin, S. O. Nepriakhin, I. V. Gervasyeva. Fizika metallov i metallovedenie. 124(3), 330 (2023). Crossref
5.
V. Milyutin, R. Bureš, M. Fáberová. Condensed Matter. 8(3), 80 (2023). Crossref
6.
V. A. Milyutin, S. O. Nepriakhin, I. V. Gervasyeva. Phys. Metals Metallogr. 124(3), 315 (2023). Crossref

Similar papers