Study of the crystallographic texture of pipe steel

B.S. Ermakov, A.A. Alhimenko, N.O. Shaposhnikov, A.S. Tsvetkov, A.V. Shirokov show affiliations and emails
Received 24 June 2019; Accepted 23 October 2019;
This paper is written in Russian
Citation: B.S. Ermakov, A.A. Alhimenko, N.O. Shaposhnikov, A.S. Tsvetkov, A.V. Shirokov. Study of the crystallographic texture of pipe steel. Lett. Mater., 2020, 10(1) 48-53
BibTex   https://doi.org/10.22226/2410-3535-2020-1-48-53

Abstract

Problems of forming the mechanical characteristics of sheet metal from the widely used steel 10G2FB.In the manufacture of large-diameter welded pipes used for the construction of pipelines operating at high pressure, it is extremely important to provide the required mechanical and service characteristics. One of the main tasks of improving the quality of each batch of sheet metal, while maintaining or reducing the cost of production of pipes, is to provide a set of mechanical properties. The problems of obtaining proper mechanical characteristics of sheet products of the widely used 10G2FB steel during its production have been raised for several years. This is explained by the facts that this steel is still used in the construction of trunk pipelines and the technological process for the production of rolled products is a multi-factor system, the accomplishment of each stage of which directly affects the quality. In this paper, we consider issues related to the study of the texture state of samples cut from 6 pipes (from different batches, different manufacturers) made of 10G2FB low-carbon steel in order to construct direct and inverse pole figures and determine the role of texture formation in the properties of the base metal. A comparative analysis of the obtained results of mechanical tests is carried out. A comparison of the test results for impact toughness and crack resistance with the results of texture analysis showed that pipe samples, in the structure of which after rolling the textures were formed, which were determined as maximum when controlling reflections from a series of planes (110), showed the best viscous properties in low temperature impact bending tests and in the entire range of studies in tests for crack resistance.

References (16)

1. S. Y. Kondrat’ev, O. V. Shvetsov. Metal Science and Heat Treatment. 60 (1-2), 32 (2018). Crossref
2. B. S. Ermakov, N. O. Shaposhnikov. Metallurgist. 62 (7-8), 766 (2018). Crossref
3. Yu. V. Podolsky. Petroleum Geology. Neftegazovaya Geologiya. Teoriya I Praktika. 3 (4), 84 (2008). (in Russian) [Ю. В. Подольский. Нефтегазовая геология. Теория и практика. 3 (4), 84 (2008).].
4. I. G. Rodionova, A. V. Mitrofanov, S. M. Tihonov et al. Inzhenernaya praktika. 12 (2017). (in Russian) [И. Г. Родионова, А. В. Митрофанов, С. М. Тихонов и др. Инженерная практика. 12 (2017).].
5. H. Kinoshita, T. Wada, R. Ando et al. Novosti chernoy metallurgiya za rubezhom. 3, 44 (2005). (in Russian) [Х. Киношита, Т. Вада, Р. Андо и др. Новости черной металлургия за рубежом. 3, 44 (2005).].
6. S. L. Zhdanov, V. D. Pozdnyakov, A. A. Maksimenko et al. Avtomaticheskaya Svarka. 11, 12 (2010). (in Russian) [С. Л. Жданов, В. Д. Позняков, А. А. Максименко и др. Автоматическая сварка. 11, 12 (2010).].
7. Y. P. Solncev, B. S. Ermakov et al. Metally i splavy. Handbook (ed. by Y. P. Solncev). St. Petersburg, Professional (2005). 998 p. (in Russian) [Ю. П. Солнцев, Б. С. Ермаков и др. Металлы и сплавы. Справочник. (под общ. ред. Ю. П. Солнцева). С.-Петербург, Профессионал (2005) 998 с.].
8. I. V. Teplukhina, V. M. Golod, A. S. Tsvetkov. Letters on Materials. 8 (1), 37 (2018). (in Russian) [И. В. Теплухина, В. М. Голод, А. С. Цветков. Письма о материалах. 8 (1), 37 (2018).]. Crossref
9. G. P. Anastasiadi, S. Yu. Kondratyev, M. V. Sil’nikov. St. Petersburg Polytechnic University Journal of Engineering Science and Technology. 2 (243), 99 (2016). (in Russian) [Г. П. Анастасиади, С. Ю. Кондратьев, М. В. Сильников. Научно-технические ведомости СПбГПУ. 2 (243), 99 (2016).]. Crossref
10. V. M. Salganik, D. N. Chikishev, E. B. Pozhidaeva, D. G. Nabatchikov. Metallurgist. 59, 766 (2015). Crossref
11. O. V. Sych, A. A. Kruglova, E. I. Khlusova, V. V. Orlov. Stal'. 1, 56 (2013). (in Russian) [О. В. Сыч, А. А. Круглова, Е. И. Хлусова, В. В. Орлов. Сталь. 1, 56 (2013).].
12. I. V. Egiz, V. F. Shamrai. Metal Science and Heat Treatment. 43 (1-2), 51 (2001). Crossref
13. I. V. Egiz, V. F. Shamrai. Metal Science and Heat Treatment. 45 (1-2), 35 (2003). Crossref
14. N. M. Shkatulyak, E. N. Tkachuk. Physics and high pressure technology. 22 (1), 107 (2012). (in Russian) [Н. М. Шкатуляк, Е. Н. Ткачук. Физика и техника высоких давлений. 22 (1), 107 (2012).].
15. M. M. Borodkina, E. N. Spector. Rentgenograficheskiy analiz tekstur v metallakh i splavakh. Moscow, Metallurgiya (1982) 272 p. (in Russian) [М. М. Бородкина, Э. Н. Спектор. Рентгенографический анализ текстур в металлах и сплавах. Москва, Металлургия (1982) 272 с.].
16. N. P. Lyakishev, V. F. Shamray, E. B. Rubina. Metally. 5, 22 (1995). (in Russian) [Н. П. Лякишев, В. Ф. Шамрай, Е. Б. Рубина, и др. Металлы. 5, 22 (1995).].

Similar papers