Comparison of the results of texture analysis of zirconium alloys based on the data of backscattered electron diffraction and X-ray radiation of different powers

M.G. Isaenkova ORCID logo , O.A. Krymskaya, K.E. Klyukova, A.V. Bogomolova, P.S. Dzhumaev, I.V. Kozlov, V.A. Fesenko show affiliations and emails
Received: 17 July 2023; Revised: 04 September 2023; Accepted: 06 September 2023
Citation: M.G. Isaenkova, O.A. Krymskaya, K.E. Klyukova, A.V. Bogomolova, P.S. Dzhumaev, I.V. Kozlov, V.A. Fesenko. Comparison of the results of texture analysis of zirconium alloys based on the data of backscattered electron diffraction and X-ray radiation of different powers. Lett. Mater., 2023, 13(4) 341-346
BibTex   https://doi.org/10.22226/2410-3535-2023-4-341-346

Abstract

Crystallographic texture is an important characteristic of all anisotropic polycrystalline materials. The formation of recrystallization texture in Russian zirconium alloys is analyzed using Debye rings obtained by shooting with a synchrotron beam, the traditional X-ray method, and backscattered electron diffraction.The crystallographic texture determines the anisotropy of zirconium alloys and is a sensitive indicator of all processes occurring in materials during plastic deformation, heat treatment, and operation. At present, the development of methods of scanning electron microscopy (SEM), as well as synchrotron radiation diffraction (SRD), makes it possible to significantly simplify the laborious procedure of texture analysis using the traditional X-ray diffraction method based on the results of the “reflection” survey. This work is devoted to the development of methods for quantitative X-ray texture analysis of deformed and annealed zirconium tubes using synchrotron radiation and the comparison of this data with the results obtained by the traditional X-ray texture analysis method. The results of texture analysis performed by different methods are compared. It is shown that when using the SEM and narrow beams of synchrotron radiation, the texture analysis is not very representative. Regularities are established for the improvement of the phase structure in deformed E110 and E635 alloys during annealing in the temperature range 480 – 640°С, as well as some features of the SEM and SRD data. Regularities of recrystallization of the α-Zr-phase in the case of the presence of up to 1.6 wt.% of the β-phase are revealed.

References (24)

1. A. S. Zaimovsky, A. V. Nikulina, N. G. Reshetnikov. Zirconium alloys in nuclear power engineering. Moscow, Energoizdat (1994) 256 p. (in Russian) [А. С. Займовский, А. В. Никулина, Н. Г. Решетников. Циркониевые сплавы в атомной энергетике. Москва, Энергоиздат (1994) 256 с.].
2. A. V. Nikulina, V. A. Markelov, V. V. Novikov, M. M. Peregud, V. F. Konkov, M. N. Sablin, O. Yu. Mileshkina. VANT series Materials science and new materials. 4 (95), 22 (2018). (in Russian) [А. В. Никулина, В. А. Маркелов, В. В. Новиков, М. М. Перегуд, В. Ф. Коньков, М. Н. Саблин, О. Ю. Милешкина. ВАНТ серия Материаловедение и новые материалы. 4 (95), 22 (2018).].
3. A. V. Obukhov, G. P. Kobylyanskiy. Tsvetnye metally. 10, 6 (2022). (in Russian) [А. В. Обухов, Г. П. Кобылянский. Цветные металлы. 10, 6 (2022).]. Crossref
4. G. P. Kobylyanskiy, A. O. Mazaev, E. A. Zvir, S. G. Eryomin, E. V. Chertopyatov, A. V. Obukhov. Inorganic Materials: Applied Research. 13 (3), 842 (2022). [Г. П. Кобылянский, А. О. Мазаев, Е. А. Звир, С. Г. Еремин, Е. В. Чертопятов, А. В. Обухов. Физика и химия обработки материалов. 4, 42 (2021).]. Crossref
5. S. A. Averin, V. L. Panchenko, V. A. Tsygvintsev, V. I. Pastukhov. Russian Metallurgy (Metally). 2021 (5), 635 (2021). (in Russian) [С. А. Аверин, В. Л. Панченко, В. А. Цыгвинцев, В. И. Пастухов. Металлы. 3, 75 (2021).]. Crossref
6. U. F. Kocks, C. N. Tome, H. R Wenk. Texture and anisotropy. Cambridge University Press (1998) 675 p.
7. K. Geelhood, W. G. Luscher, I. E. Porter. Material Property Correlations: Comparisons between FRAPCON-4.0, FRAPTRAN-2.0, and MATPRO. Pacific Northwest National Laboratory. Report number: PNNL-19417 Rev. 2. Richland. Washington 99352 (2015) 154 p. Crossref
8. M. G. Isaenkova, A. V. Tenishev, O. A. Krymskaya, S. D. Stolbov, V. V. Mikhal’chik, V. A. Fesenko, K. E. Klyukova. Nuclear Materials and Energy. 29, 101071 (2021). Crossref
9. V. Randle, O. Engler. Introduction to Texture Analysis. Macrotexture, Microtexture and Orientation Mapping. Florida, USA, CRC Press LLC (2000) 388 p. Crossref
10. M. G. Isaenkova, K. E. Klyukova, O. A. Krymskaya, V. A. Fesenko, P. S. Dzhumaev. VANT. 1, 15 (2023). (in Russian) [М. Г. Исаенкова, К. Е. Клюкова, О. А. Крымская, В. А. Фесенко, П. С. Джумаев. ВАНТ 1, 15 (2023).].
11. S.-P. Tsai, P. J. Konijnenberg, I. Gonzalez, S. Hartke, T. A. Griffiths, M. Herbig, K. Kawano-Miyata, A. Taniyama, N. Sano, S. Zaefferer. Review of Scientific Instruments. 93 (9), 093707 (2022). Crossref
12. L. Lutterotti, R. Vasin, H.-R. Wenk. Powder Diffraction. 29 (1), (2014). Crossref
13. H.-R. Wenk, L. Lutterotti, P. Kaercher, W. Kanitpanyacharoen, L. Miyagi, R. Vasin. Powder Diffraction. 29 (1), 76 (2014). Crossref
14. E. A. Benatti, N. S. De Vincentis, N. Al-Hamdany, N. Schell, H.-G. Brokmeier, M. Avalosa, R. E. Bolmaro. Journal of Synchrotron Radiation. 29, 732 (2022). Crossref
15. Y. A. Perlovich, M. G. Isaenkova, O. A. Krymskaya, V. A. Fesenko. IOP Conf. Ser. Mater. Sci. Eng. 130, 012056 (2016). Crossref
16. M. G. Isaenkova, M. I. Petrov, V. A. Fesenko, N. A. Mikhalyov, I. V. Kozlov. Non-ferrous Metals. 1, 41 (2023). Crossref
17. M. G. Isaenkova, Y. A. Perlovich, S. D. Stolbov, K. E. Klyukova, V. A. Fesenko, E. V. Berlin. Tsvetnye Metally. 2, 68 (2020). (in Russian) [М. Г. Исаенкова, Ю. А. Перлович, С. Д. Столбов, К. Е. Клюкова, В. А. Фесенко. Цветные металлы. 2, 68 (2020).]. Crossref
18. H. M. Rietveld. Z. Kristallogr. 225, 545 (2010). Crossref
19. K. Pawlik. Phys. Stat. Sol. (b). 134, 477 (1986). Crossref
20. LaboTex v. 3.0 by LaboSoft (Krakow, Poland). Available online: http://www.labosoft.com.pl (accessed on 27 July 2023).
21. MTEX software for analyzing and modeling crystallographic textures by means of EBSD or pole figure data (TU Chemnitz, Germany). Available online: https://mtex-toolbox.github.io/HomepageOld/ (accessed on 27 July 2023).
22. A. I. Saville, A. Creuziger, E. B. Mitchell, S. C. Vogel, J. T. Benzing, J. KlemmToole, K. D. Clarke, A. J. Clarke. Integrating Materials and Manufacturing Innovation. 10, 461 (2021). Crossref
23. K. E. Klyukova, M. G. Isaenkova, O. A. Krymskaya, V. A. Fesenko. Tsvetnye Metally. 10, 19 (2022). (in Russian) [К. Е. Клюкова, М. Г. Исаенкова, О. А. Крымская, В. А. Фесенко. Цветные металлы. 10, 19 (2022).]. Crossref
24. N. Bozzolo, F. Gerspach, G. Sawina, F. Wagner. Journal of Microscopy. 227 (3), 275 (2007). Crossref

Similar papers

Funding

1. The work was carried out with the financial support of the Russian Federation represented by the Ministry of Science and Higher Education of the Russian Federation - Agreement No. 075-15-2021-1352