Influence of Al impurities on the electrical properties of ZnO films

S.I. Rembeza, R.E. Prosvetov, E.S. Rembeza ORCID logo , A.A. Vinokurov, V.A. Makagonov, B.L. Agapov show affiliations and emails
Received 27 February 2019; Accepted 07 May 2019;
This paper is written in Russian
Citation: S.I. Rembeza, R.E. Prosvetov, E.S. Rembeza, A.A. Vinokurov, V.A. Makagonov, B.L. Agapov. Influence of Al impurities on the electrical properties of ZnO films. Lett. Mater., 2019, 9(3) 288-293


The results of a study of the properties of ZnO films doped with Al from 1 to 5 % at., obtained by ion beam sputtering are presented. The films have high transparency (70-90 %) in the visible range of the spectrum and have high electrical conductivity.The paper presents the results of studies of the structure, electrical and optical properties of ZnO films with Al content from 1 to 5 at.% obtained by the method of ion-beam sputtering of a composite ceramic target in an argon atmosphere. The composite target is a rectangular ZnO ceramic plate with several bands of Al2O3 corundum unevenly distributed over the ZnO surface. In one sputtering cycle, 10 samples were obtained with an aluminum concentration of 1 to 5 at.% as the results of the analysis of the energy dispersion of the second electrons. After deposition, ZnO films were partially crystallized and contained one phase of hexagonal wurtzite with increased parameters a and c. The grain size of the films was estimated using the Scherrer equation and showed a tendency for the grain sizes to change with increasing Al concentration in ZnO films. X-ray diffraction data were confirmed by studying the surface morphology using atomic force microscopy. Measurement of the electrical parameters of the films showed that the smallest resistivity (~ 4 ·10−3 Ohm · cm) is observed in ZnO films with 1 at.% Al. As the Al concentration in ZnO increases, the resistivity of the films increases, reaching the value ρ = 250 Ohm · cm at 5 at.% Al. A possible model of the effect of Al impurity on the electrical properties of ZnO films is considered. Studies of the optical properties of the samples showed that all films are highly transparent (~ 70 ÷ 90%) in the visible light range. The interference bandwidths provide an estimate of the value of the refractive index of ZnO : Al films. From the light absorption spectra, the values of the band gap of ZnO : Al samples were determined and a slight increase in the band gap of ZnO : Al with an increase in the Al concentration in films was established. The mechanism of this behavior of Al impurity in ZnO is discussed. Possible areas of application for ZnO films with Al impurities are considered.

References (22)

1. Z. L. Wang. J. Phys. Condens. Matter 2016. 16, 829 (2004). Crossref
2. S. T. Shishiyanu, T. S. Shishiyanu, O. I. Lupan. Sens. Actuator B-Chem. 107, 379 (2005). Crossref
3. J. F. Wager. Science. 300, 1245 (2003). Crossref
4. L. J. Mandalapu, Z. Yang, S. Chu, J. L. Liu. Appl. Phys. Lett. 92, 122101 (2008). Crossref
5. K. L. Foo, M. Kashif, U. Hashim, W. W. Liu. Ceram Int. 40, 753 (2014). Crossref
6. Y. Liu, Y. Li, H. Zeng. J. Nanomater. 2013, 196521 (2013). Crossref
7. T. Jannanea, M. Manoua, A. Liba, N. Fazouan, A. El Hichou, A. Almaggoussi, A. Outzourhit, M. Chaik. J. Mater. Environ. Sci. 8 (1), 160 (2017).
8. N. A. Lashkova, A. I. Maximov, A. A. Ryabko, A. A. Bobkov, V. A. Moshnikov, E. I. Terukov. Semiconductors. 50, 1254 (2016). (in Russian) [Н. А. Лашкова, А. И. Максимов, А. А. Рябко, А. А. Бобков, В. А. Мошников, Е. И. Теруков. Физика и техника полупроводников. 50 (9), 1276 (2016).]. Crossref
9. F. Choikh, Y. Beggah, M. S. Aida. Int. J. Thin Film Sci. Tech. 3 (2), 51 (2014). Crossref
10. P. Gondoni, M. Ghidelli, F. Di Fonzo, V. Russo, P. Bruno, J. Marth-Rujas, C. E. Bottani, A. Li Bassi, C. S. Casari. Thin Solid Films. 520, 4707 (2012). Crossref
11. X. Wang, X. Zeng, D. Huang, X. Zhang, Q. Li. J. Mater. Sci. Mater. Electron. 23, 1580 (2012). Crossref
12. A. A.-G. Farrag, M. Balboul. J. Sol-Gel Sci. Technol. 82, 269 (2017). Crossref
13. J. C. Fan, K. M. Sreekanth, Z. Xie, S. L. Chan, K. V. Rao. Prog. Mater. Sci. 58, 874 (2013). Crossref
14. A. D. Pogrebnjak, A. A. Muhammed, E. T. Karash, N. Y. Jamil, J. Partyka. Przeglad Elektrotechniczny. 89 (3), 315 (2013).
15. I. V. Babkina, O. V. Zhilova, Y. Y. Kalinin, V. A. Makagonov, O. I. Remizova, A. V. Sitnikov. Letters on Materials. 8 (2), 196 (2018). (in Russian) [И.В. Бабкина, О.В. Жилова, Ю.Е. Калинин, В.А. Макагонов, О.И. Ремизова, А.В. Ситников. Письма о материалах. 8 (2), 196 (2018).]. Crossref
16. I. S. Ilyaushev, Yu. E. Kalinin, V. A. Makagonov, S. Yu. Pankov, A. V. Sitnikov. Bulletin of Voronezh state technical University. 13 (5), 100 (2017). (in Russian) [И. С. Ильяшев, Ю. Е. Калинин, В. А. Макагонов, С. Ю. Панков, А. В. Ситников. Вестник Воронежского государственного технического университета. 13 (5), 100 (2017).].
17. S. Mridha, D. Basak. J. Phys. D. Appl. Phys. 40, 6902 (2007). Crossref
18. W. H. Hirschwald. Acc. Chem. Res. 18 (8), 228 (1985). Crossref
19. C.-L. Tang, H.-Y. Lin, C.-K. Chang, C.-J. Tang. Adv. Condens. Matter Phys. 2018, 2647282 (2018). Crossref
20. J. I. Pankove. Optical processes in semiconductors. New Jersey, Englewood Cliffs (1971) 422 p.
21. N. Baydogan, T. Ozdurmusoglu, H. Cimenoglu. Defect and Diffusion Forum. 334 - 335, 290 (2013). Crossref
22. I. Juhnevica, M. Masonkina, G. Mezinskis, A. Gabrene. Material Science and Applied Chemistry. 31, 33 (2015). Crossref

Similar papers