On the manifestation of reversible deformation under shock-wave loading of nitrogenous Cr-Mn-Ni austenitic steel

V.V. Sagaradze, N.V. Kataeva ORCID logo , I.G. Kabanova, S.V. Afanasyev, A.V. Pavlenko show affiliations and emails
Received 05 August 2021; Accepted 07 October 2021;
This paper is written in Russian
Citation: V.V. Sagaradze, N.V. Kataeva, I.G. Kabanova, S.V. Afanasyev, A.V. Pavlenko. On the manifestation of reversible deformation under shock-wave loading of nitrogenous Cr-Mn-Ni austenitic steel. Lett. Mater., 2021, 11(4) 403-408
BibTex   https://doi.org/10.22226/2410-3535-2021-4-403-408

Abstract

Under shock-wave loading at a speed of 471 m / s at 20 °C, a phase hammer hardening of austenite is observed as a result of cyclic γ → ε → γ transformation, which manifests in the form of an increased dislocation density (2 × 1010 cm-2) at the site of former ε-martensite crystals.The features of structural-phase transformations during cold rolling and shock-wave loading at (−129…20°C) in austenitic nitrogen-containing steel 0.4N-20Sg-6Ni-11Mn-2Mo-V-Nb are studied. The possibility of the formation of ε-martensite with a density lower than that of the initial γ-phase mainly at high shock loading rates (448 and 471 m / s) is shown. Cold rolling at 20°C does not cause a γ → ε martensitic transformation. A small amount of martensitic α and ε phases (less than 5 %) is formed during rolling only at a cryogenic temperature of 196°C. During the shock-wave impact at −129°C at a speed of 448 m / s, plates of ε-martensite are formed and preserved. The martensitic orientation relation (111)γ || (0001)ε, [101−]γ || [112−0]ε exists between the crystals of the γ and ε phases. The martensitic ε-phase formed under low-temperature (−129°C) explosive loading is preserved in the structure, since the observed deformation heating of the metal does not exceed the temperature range of the reverse martensitic transformation ε → γ (200 – 300°C). Shock-wave loading of steel at 20°C at a speed of 471 m / s leads not only to the formation of the ε-phase, but also causes the reverse ε → γ transformation in those areas that are heated to 250 – 300°C. Shock-wave loading at a speed of 471 m / s at 20°C contributes to the development of cyclic γ → ε → γ transformation, which may be the cause of the phase hardening of austenite and the manifestation of the shape memory effect. In place of the ε-martensite crystals, banded clusters of dislocations with a density of 8 ×1010 cm−2 are formed, corresponding in shape to the location of the transformed martensite plates. In this paper, the high density of dislocations in phase-hardened austenite is associated with the inheritance of the dislocation structure by austenite from the strongly deformed ε-phase.

References (22)

1. V. V. Sagaradze, E. V. Belozerov, M. L. Mukhin, Yu. R. Zainutdinov, N. L. Pecherkina, V. A. Zavalishin. Phys. Metals Metallog. 101, 5 (2006). Crossref
2. V. V. Sagaradze, M. L. Mukhin, E. V. Belozerov, Yu. R. Zainutdinov, N. L. Pecherkina, Yu. I. Filippov. Materials Science and Engineering A. 481 - 482, 742 (2008). Crossref
3. V. V. Sagaradze, S. V. Afanas’ev, N. V. Kataeva. Phys. Metals Metallog. 119, 8 (2018). (in Russian) [В. В. Сагарадзе, С. В. Афанасьев, Н. В. Катаева. ФММ. 119, 8 (2018).]. Crossref
4. V. V. Sagaradze, Ye. V. Belozerov, N. L. Pecherkina, M. L. Mukhin, Yu. R. Zaynutdinov. Materials Science and Engineering A. 438 - 440, 812 (2006). Crossref
5. V. V. Sagaradze, A. I. Uvarov. Hardening and properties of austenitic steels. Yekaterinburg, RIO UrO RAS (2013) 720 p. (in Russian) [В. В. Сагарадзе, А. И. Уваров. Упрочнение и свойства аустенитных сталей. Екатеринбург, РИО УрО РАН (2013) 720 с.].
6. V. V. Sagaradze, S. V. Afanas’ev High-Strength Precipitation-Hardening Austenitic Steels with Shape Memory Effect. In: Shape memory alloys: properties, technologies, opportunities (ed. by N. Resnina, V. Rubanik). Trans Tech Publications Ltd. Pfaffikon, Switzerland (2015) part 4, pp. 575 – 599. Crossref
7. A. Baruj, T. Kikuchi, S. Kadjivara, N. Shinya. J. Phys. IV France. 112, 373 (2003). Crossref
8. Z. Z. Dong, S. Kajiwara, T. Kikuchi, T. Sawaguchi. Acta Materialia. 53 (15), 4009 (2005). Crossref
9. V. G. Gavriljuk, V. V. Bliznuk, V. D. Shanina, S. P. Kolesnik. Materials Science and Engineering A. 406, 1 (2005). Crossref
10. V. V. Sagaradze, V. I. Voronin, Yu. I. Filippov, V. A. Kazantsev, M. L. Mukhin, E. V. Belozerov, N. L. Pecherkina, N. V. Kataeva, A. G. Popov. Phys. Metals Metallogr. 106, 6 (2008). Crossref
11. D. Kim, C. Park, J. Lee, K. Hong, Y. Park, W. Lee. Engineering Structures. 239, 15 (2021). Crossref
12. S. Choi, E. Choi, W. J. Kim. Materials Characterization. 175, 111097 (2021). Crossref
13. J. S. T. van Aswegen, R. W. K. Honeycombe. Acta Metallurgica. 10, 3 (1962). Crossref
14. I. V. Gorynin, V. A. Malyshevsky, G. Yu. Kalinin, S. Yu. Mushnikova, O. A. Bannykh, V. M. Blinov, M. V. Kostina. Questions of Materials Science. 3, 59 (2009). (in Russian) [И. В. Горынин, В. А. Малышевский, Г. Ю. Калинин, С. Ю. Мушникова, О. А. Банных, В. М. Блинов, М. В. Костина. Вопросы материаловедения. 3, 59 (2009).].
15. O. A. Bannykh. Мetal Science and Heat Treatment of Metals. 7, 601 (2005). (in Russian) [Банных О.А. МиТОМ. 7, 601 (2005).].
16. S. Y. Mushnikova, S. K. Kostin, V. V. Sagaradze, N. V. Kataeva. Phys. Metals Metallogr. 118, 11 (2017). (in Russian) [C. Ю. Мушникова, С. К. Костин, В. В. Сагарадзе, Н. В. Катаева. ФММ. 118, 11 (2017).]. Crossref
17. V. V. Sagaradze, N. V. Kataeva, S. Yu. Mushnikova, G. Yu. Kalinin, O. A. Kharkov, S. K. Kostin, O. N. Parmenova. Questions of Materials Science. 3, 83 (2015).] (in Russian) [В. В. Сагарадзе, Н. В. Катаева, С. Ю. Мушникова, Г. Ю. Калинин, О. А. Харьков, С. К. Костин, О. Н. Парменова. Вопросы материаловедения. 3, 83 (2015).].
18. V. A. Zavalishin, V. V. Sagaradze, N. V. Kataeva, G. Yu. Kalinin, S. Yu. Mushnikova. Questions of Materials Science. 3, 67 (2011). (in Russian) [В. А. Завалишин, В. В. Сагарадзе, Н. В. Катаева, Г. Ю. Калинин, С. Ю. Мушникова. Вопросы материаловедения. 3, 67 (2011).].
19. V. V. Sagaradze, N. V. Kataeva, I. G. Kabanova, S. V. Afanasev, A. V. Pavlenko. Phys. Metals Metallogr. 121, 7 (2020). (in Russian) [В. В. Сагарадзе, Н. В. Катаева, И. Г. Кабанова, С. В. Афанасьев, А. П. Павленко. ФММ. 121, 7 (2020).]. Crossref
20. B. F. Wang, Z. L. Liu, X. Y. Wang, Z. Z. Li. Materials Science and Engineering A. 610, 29 (2014). Crossref
21. Q. Xue, J. F. Bingert, B. L. Henrie, G. T. Gray III. Materials Science and Engineering A. 473, 279 (2008). Crossref
22. M. A. Meyers, Y. B. Xu, Q. Xue, M. T. Perez-Prado, T. R. McNelley. Acta Materialia. 51, 1307 (2003). Crossref

Similar papers

Funding

1. The research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation - theme “Structure”№ АААА-А18-118020190116-6