Scroll structure of carbon nanotubes obtained by the hydrothermal synthesis

E.A. Belenkov, F.K. Shabiev show affiliations and emails
Received: 06 April 2015; Revised: 11 June 2015; Accepted: 26 June 2015
Citation: E.A. Belenkov, F.K. Shabiev. Scroll structure of carbon nanotubes obtained by the hydrothermal synthesis. Lett. Mater., 2015, 5(4) 459-462
BibTex   https://doi.org/10.22226/2410-3535-2015-4-459-462

Abstract

The structure of multilayer carbon nanotubes was studied by means of X-ray diffraction and elector microscopy.An example of  scanning electron microscopic image of carbon material heated up to 800 °C and following cooling in distilled water is presented. The outlined rectangular zone A contains scrolled structureIn this paper there were studied the structure of multilayer carbon nanotubes by methods of X-ray diffraction and elector microscopy. Carbon nanotubes were obtained by hydrothermal synthesis. Molecular mechanics methods (MM+) were used in model calculations. It is revealed that graphene layers form the structure of scrolled carbon nanotubes as a result of junction hydrogen atoms and/or hydroxyl groups to the graphene layers. As a result it is revealed that the amount of the tubular nanostructures obtained by hydrothermal synthesis is less than 1 ÷ 2% of the initial amount of graphite.

References (15)

1. E.A. Belenkov, V.A. Greshnyakov. New CarbonMaterials. 28(4), 273-282 (2013). Crossref
2. E.A. Belenkov, V.A. Greshnyakov. Physics of theSolid State. 55(8), 1754-1764 (2013). [Е.А. Беленков, В.А. Грешняков.Физика твердого тела. 55(8), 1640-1650 (2013)]. Crossref
3. R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus.Applied physics letters. 60(18), 2204-2206 (1992). Crossref
4. P.J.F. Harris. Carbon nanotubes and related structures.Cambridge: Cambridge University Press, 2001, 294 pp.
5. S. Iijima. Nature. 354(6348), 56-58 (1991). Crossref
6. A.V. Eletskii. Physics-Uspekhi, 45(4), 369-402 (2002).[А.В.Елецкий. УФН, 172(4), 401-438 (2002).]. Crossref
7. J.A. Baimova, R.T. Murzaev, S.V. Dmitriev. Physics of theSolid State. 56(10), 2010-2016 (2014). [Ю.А. Баимова, Р.Т. Мурзаев, С.В. Дмитриев. Физика твердого тела.56(10), 1946-1952 (2014).].
8. M.M. Brzhezinskaya, L.A. Pesin, V.M. Morilova, E.M.Baitinger. Physics of the Solid State. 54(9), 1930-1934 (2012). [М.М. Бржезинская, Л.А. Песин, В.М.Морилова, Е.М. Байтингер. Физика твердого тела.54(9), 1808-1812 (2012).].
9. M.M. Brzhezinskaya, E.M. Baitinger, E.A. Belenkov, L.M. Svirskaya. Physics of the Solid State, 55(4), 850-854(2013).
10. Z.H. Kang, E.B. Wang, L. Gao, S.Y. Lian, ; M. Jiang, ; C.W.Hu, L.J. Xu. Am. Chem. Soc. 125(45), 13652-13653(2003). Crossref
11. A.N. Ivanov, L.N. Rastorgouev, Y.A. Skakov, J.S. Umansky.Crystallography, X-ray analysis and electron microscopy.Moscow: Metallurgy, 1982, 632 p. (in Russian) [А.Н.Иванов, Л.Н. Расторгуев, Ю.А. Скаков, Я.С. Уманский.Кристаллография, рентгенография и электроннаямикроскопия. Москва: Металлургия, 1982, 632 с.].
12. N.L. Allinger, J. Amer. Chem. Sos. 99(25), 8127-8134(1977). Crossref
13. E.A. Belenkov. Proceedings of the Chelyabinsk ScientificCenter of Ural Branch of the Russian Academy of Sciences10(1), 25-30 (2001). (in Russian) [Е.А. Беленков.Известия Челябинского научного центра УрО РАН.10(1), 25-30 (2001)].
14. A.V. Eletskii Physics-Uspekhi, 40(9), 899-924(1997). [А.В. Елецкий. УФН, 167(9), 945-972 (1997).DOI: 10.3367/UFNr.0167.199709b.0945]. Crossref
15. A.R. Ubbelohde, F.A. Lewis. Graphite and its crystalcompounds. London: Oxford University Press, 1960, 217 pp.

Cited by (2)

1.
Yu. V. Pakharukov, F. K. Shabiev, R. F. Safargaliev. AIP Conference Proceedings. 2015, 020068 (2018). Crossref
2.
T. Belenkova, V. Greshyakov, V. Chernov, E. Belenkov. J. Phys.: Conf. Ser. 917, 032015 (2017). Crossref

Similar papers