Scroll structure of carbon nanotubes obtained by the hydrothermal synthesis

E.A. Belenkov, F.K. Shabiev show affiliations and emails
Received: 06 April 2015; Revised: 11 June 2015; Accepted: 26 June 2015
Citation: E.A. Belenkov, F.K. Shabiev. Scroll structure of carbon nanotubes obtained by the hydrothermal synthesis. Lett. Mater., 2015, 5(4) 459-462


The structure of multilayer carbon nanotubes was studied by means of X-ray diffraction and elector microscopy.An example of  scanning electron microscopic image of carbon material heated up to 800 °C and following cooling in distilled water is presented. The outlined rectangular zone A contains scrolled structureIn this paper there were studied the structure of multilayer carbon nanotubes by methods of X-ray diffraction and elector microscopy. Carbon nanotubes were obtained by hydrothermal synthesis. Molecular mechanics methods (MM+) were used in model calculations. It is revealed that graphene layers form the structure of scrolled carbon nanotubes as a result of junction hydrogen atoms and/or hydroxyl groups to the graphene layers. As a result it is revealed that the amount of the tubular nanostructures obtained by hydrothermal synthesis is less than 1 ÷ 2% of the initial amount of graphite.


1. E.A. Belenkov, V.A. Greshnyakov. New CarbonMaterials. 28(4), 273-282 (2013). Crossref
2. E.A. Belenkov, V.A. Greshnyakov. Physics of theSolid State. 55(8), 1754-1764 (2013). [Е.А. Беленков, В.А. Грешняков.Физика твердого тела. 55(8), 1640-1650 (2013)]. Crossref
3. R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus.Applied physics letters. 60(18), 2204-2206 (1992). Crossref
4. P.J.F. Harris. Carbon nanotubes and related structures.Cambridge: Cambridge University Press, 2001, 294 pp.
5. S. Iijima. Nature. 354(6348), 56-58 (1991). Crossref
6. A.V. Eletskii. Physics-Uspekhi, 45(4), 369-402 (2002).[А.В.Елецкий. УФН, 172(4), 401-438 (2002).]. Crossref
7. J.A. Baimova, R.T. Murzaev, S.V. Dmitriev. Physics of theSolid State. 56(10), 2010-2016 (2014). [Ю.А. Баимова, Р.Т. Мурзаев, С.В. Дмитриев. Физика твердого тела.56(10), 1946-1952 (2014).].
8. M.M. Brzhezinskaya, L.A. Pesin, V.M. Morilova, E.M.Baitinger. Physics of the Solid State. 54(9), 1930-1934 (2012). [М.М. Бржезинская, Л.А. Песин, В.М.Морилова, Е.М. Байтингер. Физика твердого тела.54(9), 1808-1812 (2012).].
9. M.M. Brzhezinskaya, E.M. Baitinger, E.A. Belenkov, L.M. Svirskaya. Physics of the Solid State, 55(4), 850-854(2013).
10. Z.H. Kang, E.B. Wang, L. Gao, S.Y. Lian, ; M. Jiang, ; C.W.Hu, L.J. Xu. Am. Chem. Soc. 125(45), 13652-13653(2003). Crossref
11. A.N. Ivanov, L.N. Rastorgouev, Y.A. Skakov, J.S. Umansky.Crystallography, X-ray analysis and electron microscopy.Moscow: Metallurgy, 1982, 632 p. (in Russian) [А.Н.Иванов, Л.Н. Расторгуев, Ю.А. Скаков, Я.С. Уманский.Кристаллография, рентгенография и электроннаямикроскопия. Москва: Металлургия, 1982, 632 с.].
12. N.L. Allinger, J. Amer. Chem. Sos. 99(25), 8127-8134(1977). Crossref
13. E.A. Belenkov. Proceedings of the Chelyabinsk ScientificCenter of Ural Branch of the Russian Academy of Sciences10(1), 25-30 (2001). (in Russian) [Е.А. Беленков.Известия Челябинского научного центра УрО РАН.10(1), 25-30 (2001)].
14. A.V. Eletskii Physics-Uspekhi, 40(9), 899-924(1997). [А.В. Елецкий. УФН, 167(9), 945-972 (1997).DOI: 10.3367/UFNr.0167.199709b.0945]. Crossref
15. A.R. Ubbelohde, F.A. Lewis. Graphite and its crystalcompounds. London: Oxford University Press, 1960, 217 pp.

Cited by (2)

T. Belenkova, V. Greshyakov, V. Chernov, E. Belenkov. J. Phys.: Conf. Ser.. 917, 032015 (2017). Crossref