Scroll structure of carbon nanotubes obtained by the hydrothermal synthesis

E.A. Belenkov, F.K. Shabiev
Received: 06 April 2015; Revised: 11 June 2015; Accepted: 26 June 2015
Citation: E.A. Belenkov, F.K. Shabiev. Scroll structure of carbon nanotubes obtained by the hydrothermal synthesis. Letters on Materials, 2015, 5(4) 459-462
BibTex   DOI: 10.22226/2410-3535-2015-4-459-462


The structure of multilayer carbon nanotubes was studied by means of X-ray diffraction and elector microscopy.An example of  scanning electron microscopic image of carbon material heated up to 800 °C and following cooling in distilled water is presented. The outlined rectangular zone A contains scrolled structureIn this paper there were studied the structure of multilayer carbon nanotubes by methods of X-ray diffraction and elector microscopy. Carbon nanotubes were obtained by hydrothermal synthesis. Molecular mechanics methods (MM+) were used in model calculations. It is revealed that graphene layers form the structure of scrolled carbon nanotubes as a result of junction hydrogen atoms and/or hydroxyl groups to the graphene layers. As a result it is revealed that the amount of the tubular nanostructures obtained by hydrothermal synthesis is less than 1 ÷ 2% of the initial amount of graphite.

References (15)

E.A. Belenkov, V.A. Greshnyakov. New CarbonMaterials. 28(4), 273-282 (2013). DOI: 10.1016/S1872-5805(13)60081-5
E.A. Belenkov, V.A. Greshnyakov. Physics of theSolid State. 55(8), 1754-1764 (2013). DOI: 10.1134/S1063783413080039 [Е.А. Беленков, В.А. Грешняков.Физика твердого тела. 55(8), 1640-1650 (2013)].
R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus.Applied physics letters. 60(18), 2204-2206 (1992). DOI: 10.1063/1.107080
P.J.F. Harris. Carbon nanotubes and related structures.Cambridge: Cambridge University Press, 2001, 294 pp.
S. Iijima. Nature. 354(6348), 56-58 (1991).DOI:10.1038/354056a0
A.V. Eletskii. Physics-Uspekhi, 45(4), 369–402 (2002).DOI: 10.1070/PU2002v045n04ABEH001033 [А.В.Елецкий. УФН, 172(4), 401-438 (2002).]
J.A. Baimova, R.T. Murzaev, S.V. Dmitriev. Physics of theSolid State. 56(10), 2010-2016 (2014). [Ю.А. Баимова,Р.Т. Мурзаев, С.В. Дмитриев. Физика твердого тела.56(10), 1946-1952 (2014).]
M.M. Brzhezinskaya, L.A. Pesin, V.M. Morilova, E.M.Baitinger. Physics of the Solid State. 54(9), 1930-1934 (2012). [М.М. Бржезинская, Л.А. Песин, В.М.Морилова, Е.М. Байтингер. Физика твердого тела.54(9), 1808-1812 (2012).]
M.M. Brzhezinskaya, E.M. Baitinger, E.A. Belenkov,L.M. Svirskaya. Physics of the Solid State, 55(4), 850-854(2013).
Z.H. Kang, E.B. Wang, L. Gao, S.Y. Lian,; M. Jiang,; C.W.Hu, L.J. Xu. Am. Chem. Soc. 125(45), 13652–13653(2003). DOI: 10.1021/ja037399m
A.N. Ivanov, L.N. Rastorgouev, Y.A. Skakov, J.S. Umansky.Crystallography, X-ray analysis and electron microscopy.Moscow: Metallurgy, 1982, 632 p. (in Russian) [А.Н.Иванов, Л.Н. Расторгуев, Ю.А. Скаков, Я.С. Уманский.Кристаллография, рентгенография и электроннаямикроскопия. Москва: Металлургия, 1982, 632 с.]
N.L. Allinger, J. Amer. Chem. Sos. 99(25), 8127–8134(1977). DOI: 10.1021/ja00467a001
E.A. Belenkov. Proceedings of the Chelyabinsk ScientificCenter of Ural Branch of the Russian Academy of Sciences10(1), 25-30 (2001). (in Russian) [Е.А. Беленков.Известия Челябинского научного центра УрО РАН.10(1), 25-30 (2001)].
A.V. Eletskii Physics-Uspekhi, 40(9), 899–924(1997). DOI: 10.1070/PU1997v040n09ABEH000282[А.В. Елецкий. УФН, 167(9), 945–972 (1997).DOI: 10.3367/UFNr.0167.199709b.0945]
A.R. Ubbelohde, F.A. Lewis. Graphite and its crystalcompounds. London: Oxford University Press, 1960,217 pp.

Cited by (4)

Беленкова Т.Е., Чернов В.М., Беленков Е.А., Радиоэлектроника. Наносистемы. Информационные технологии 8(1), 49-54 (2016).
Беленков Е.А., Челябинский физико-математический журнал 1(4), 102-111 (2016).
Согрина Е.Э., Актуальные проблемы микро- и наноэлектроники, 216 (2016).
Савин А.В., Мазо М.А., Физика твердого тела 59(6), 1234-1239 (2017).