Sensory properties of carbon nanotubes containing impurity boron atoms

S.V. Boroznin, I.V. Zaporotskova show affiliations and emails
Received 01 April 2022; Accepted 28 May 2022;
Citation: S.V. Boroznin, I.V. Zaporotskova. Sensory properties of carbon nanotubes containing impurity boron atoms. Lett. Mater., 2022, 12(3) 214-218
BibTex   https://doi.org/10.22226/2410-3535-2022-3-214-218

Abstract

The figure shows a model used in a model experiment to study the interaction of modified boron-containing nanotubes with a carbon dioxide moleculeNanotubes, being one of the most demanded nanotechnology materials, are finding new areas of application. One of these areas is their use as highly sensitive sensors. However, in the practical application of nanotubes, it often turns out that, despite the positive sorption properties, a change in their electronic state does not occur after the capture of the analyte. This fact significantly complicates the possibility of their use as sensory nanosensors. One of the ways to improve the electronic properties of carbon nanotubes by creating heterostructures on their surface is modification with various atoms. At the same time, one of the most effective substances for carrying out the substitution reaction is boron. It makes it possible to create a redistribution of electron density on the surface of nanotubes without introducing significant changes in the topology of the nanotube surface. This article analyzes a model experiment to study the possibility of using the nanotubes themselves as highly sensitive nanosensors in relation to carbon dioxide molecules.

References (27)

1. R. K. Pandyan, S. Seenithurai, M. Mahendran. Indian Journal of Physics. 86 (8), 677 (2012). Crossref
2. M. S. A. Bistamam, M. A. Azam. Results in Physics. 4, 105 (2014). Crossref
3. A. A. EL-Barbary, K. M. Eid, M. A. Kamel, H. M. Osman, G. H. Ismail. J. Surf. Eng. Mater. Adv. Technol. 4, 66 (2014). Crossref
4. M. A. Azam, M. W. A. Rashid, K. Isomura, A. Fujiwara, T. Shimoda. Adv. Mater. Res. 620, 213 (2013). Crossref
5. M. A. Azam, N. H. Jantan, N. Dorah, R. N. A. R. Seman, N. S. A. Manaf, T. I. T. Kudin, M. Z. Yahya. Mater. Res. Bull. 69, 20 (2015). Crossref
6. R. N. A. R. Seman, M. A. Azam, A. A. Mohamad. Renew. Sustain. Energy Rev. 75, 644 (2017). Crossref
7. I. V. Zaporotskova, N. P. Boroznina, Y. N. Parkhomenko, L. V. Kozhitov. Modern Electronic Materials. 2, 95 (2016). Crossref
8. D. Z. Kutlubaev, D. V. Makaev, P. N. D’yachkov. Journal of inorganic chemistry. 56 (8), 1301 (2011). Crossref
9. P. N. D’yachkov, D. Z. Kutlubaev, D. V. Makaev. Physical Review B. 82, 035426 (2010). Crossref
10. D. Jung, M. Han, G. Lee. Sens. Actuators A: Phys. 211, 51 (2014). Crossref
11. M. Roberts, M. LeMieux, Z. Bao. ACS Nano. 3, 3287 (2009). Crossref
12. D. Ruixue, Y. Yintang, L. Lianxi. J. Semicond. 30, 114010 (2009). Crossref
13. S. Gowtham, R. H. Scheicher, R. Ahuja, R. Pandey, S. Karna. Phys. Rev. B. 76, 033401 (2007). Crossref
14. D. S. Rawat, M. M. Calbi, A. D. Migone. J. Phys. Chem. C. 111, 12980 (2007). Crossref
15. M. T. Baei, A. R. Soltani, A. V. Moradi, M. Moghimi. Monatsh. Chem. 142, 573 (2011). Crossref
16. A. A. Koós, F. Dillon, E. A. Obraztsova, A. Crossley, N. Grobert. Carbon. 48, 3033 (2010). Crossref
17. M. A. Mamo, A. O. Sustaita, Z. N. Tetana, N. J. Coville, I. A. Hümmelgen. J. Mater. Sci. Mater. Electron. 24, 3995 (2013). Crossref
18. R. Czerw, P. W. Chiu, Y. M. Choi, D. S. Lee, D. L. Carroll, S. Roth, Y. W. Park. Curr. Appl. Phys. 2, 473 (2002). Crossref
19. S. Shiraishi, M. Kibe, T. Yokoyama, H. Kurihara, N. Patel, A. Oya, Y. Kaburagi, Y. Hishiyama. Appl. Phys. A. 82, 585 (2006). Crossref
20. Y. A. Kim, S. Aoki, K. Fujisawa, Y. I. Ko, K. S. Yang, C. M. Yang, Y. C. Jung, T. Hayashi, M. Endo, M. Terrones, M. S. Dresselhaus. J. Phys. Chem. C. 118, 4454 (2014). Crossref
21. Y. Sato, H. Nishizaka, K. Motomiya, G. Yamamoto, A. Okubo, H. Kimura, M. Ishikuro, K. Wagatsuma, T. Hashida, K. Tohji. ACS Appl. Mater. Interfaces. 3, 2431 (2011). Crossref
22. J. L. Blackburn, Y. Yan, C. Engtrakul, P. A. Parilla, K. Jones, T. Gennett, A. C. Dillon, M. J. Heben. Chem. Mater. 18, 2558 (2006). Crossref
23. S. S. Katta, S. Yadav, A. Pratap Singh, B. SanthiBhushan, A. Srivastava. Applied Surface Science. 588, 152989 (2022). Crossref
24. S. V. Sawant, A. W. Patwardhan, J. B. Joshi, K. Dasgupta. Chemical Engineering Journal. 427, 131616 (2022). Crossref
25. N. G. Tsierkezos, U. Ritter, Y. Nugraha Thaha, A. Knauer, D. Fernandes, A. Kelarakis, E. K. McCarthy. Chemical Physics Letters. 710, 157 (2018). Crossref
26. N. P. Boroznina, I. V. Zaporotskova, S. V. Boroznin, L. V. Kozhitov, A. V. Popkova. Russ. J. Inorg. Chem. 64 (1), 74 (2019). Crossref
27. N. Boroznina, I. Zaporotskova, S. Boroznin, L. Kozhitov, P. Zaporotskov. World Congress on Recent Advances in Nanotechnology. Lisbon, Portugal. (2020) pp. 125-1-125-7. Crossref

Similar papers

Funding

1. Ministry of Science and Higher Education of the Russian Federation - МК-2089.2021.1.2