Toward large scale modeling of carbon nanotube systems with the mesoscopic distinct element method

I. Ostanin, P. Zhilyaev, V. Petrov, T. Dumitrica, S. Eibl, U. Ruede, V. Kuzkin
Received: 30 March 2018; Revised: 04 April 2018; Accepted: 05 April 2018
This paper is written in Russian
Citation: I. Ostanin, P. Zhilyaev, V. Petrov, T. Dumitrica, S. Eibl, U. Ruede, V. Kuzkin. Toward large scale modeling of carbon nanotube systems with the mesoscopic distinct element method. Letters on Materials, 2018, 8(3) 240-245
BibTex   DOI: 10.22226/2410-3535-2018-3-240-245

Abstract

A mesoscopic distinct element method enables large-scale modeling of carbon nanotube networks. Massively parallel dynamics engine allows studying self-assembly and mechanics of micrometer-size specimens.We introduce a new scalable and efficient implementation of the mesoscopic distinct element method for massively parallel numerical simulations of carbon nanotube systems. Carbon nanotubes are represented as chains of rigid bodies, linked by elastic bonds and dispersive van der Waals (vdW) forces. The Enhanced Vector Model formalism is employed here to capture the elastic deformation of nanotubes. Dispersive interactions between the neighboring nanotubes are described with the coarse-grained vdW potential. Time integration is performed using a velocity Verlet integration scheme with tunable damping in order to describe the energy dissipation to the implicit degrees of freedom. Due to the scalable Message Passing Interface (MPI) parallelization, enabled by rigid particle dynamics module (PE) of the waLBerla multiphysics framework, our method is capable of modeling large assemblies of carbon nanotubes. This advance enables us to move closer to the length and time scales required to extract representative mechanics of carbon nanotube materials. The promising scalability of the new implementation is probed in two examples of self-assembly of ultra-thin carbon nanotube films and carbon nanotube buckypapers, where formation of hierarchical networks of carbon nanotube bundles, storing both elastic and vdW adhesion energy is being observed. The relaxation of one cubic micrometer of buckypaper illustrates the code scalability.

References (30)

1.
S. Iijima. Nature 354, 56 (1991). DOI: 10.1038/354056a0
2.
R. H. Baughman. Science. 297, 787 (2002). DOI: 10.1126/science.1060928
3.
M. S. Dresselhaus, G. Dresselhaus, P. Avouris. (eds.) Carbon nanotubes: synthesis, structure, properties, and applications. Springer, Berlin-New York (2001).
4.
R. Saito, G. Dresselhaus, M. S. Dresselhaus. Physical properties of carbon nanotubes. World Scientific, Singapore (1998).
5.
B. Yakobson, C, Brabec, J. Bernholc. Phys. Rev. Lett. 76(14), 2511 (1996). DOI: 10.1103/physrevlett.76.2511
6.
T. Dumitrica, M. Hua, B. Yakobson. Proc. Natl. Acad. Sci. U.S.A. 103(16), 6105 (2006). DOI: 10.1073/pnas.0600945103
7.
D.‑B. Zhang, T. Dumitrica. Appl. Phys. Lett. 93, 031919 (2008). DOI: 10.1063/1.2965465
8.
I. Nikiforov, D.‑B. Zhang, R. James, T. Dumitrica. Appl. Phys. Lett. 96, 123107 (2010). DOI:10.1063/1.3368703
9.
M. J. Buehler. Journ. Mat. Res. 21(11), 2855 (2006). DOI: 10.1557/jmr.2006.0347
10.
S. W. Cranford, M. J. Buehler. Nanotechnology. 21, 265706 (2010). DOI: 10.1088/0957-4484/21/26/265706
11.
R. Mirzaeifar, Z. Qin, M. Buehler. Nanoscale. 7(12), 5435 (2015). DOI: 10.1039/C4NR06669C
12.
T. Anderson, E. Akatyeva, I. Nikiforov, D. Potyondy, R. Ballarini, T. Dumitrica. Journ. Nanotech. Eng. Med. 1(4), 0410009 (2010). DOI: 10.1115/1.4002609
13.
I. Ostanin, R. Ballarini, D. Potyondy, T. Dumitrica. Journ. Mech. Phys. Sol. 61(3), 762 (2013). DOI: 10.1016/j.jmps.2012.10.016
14.
I. Ostanin, R. Ballarini, T. Dumitrica. Journ. Appl. Mech. 81(6), 061004 (2014). DOI: 10.1115/1.4026484
15.
I. Ostanin, R. Ballarini, T. Dumitrica. Journ. Mat. Res. 30(1), 19 (2015). DOI: 10.1557/jmr.2014.279
16.
Y. Wang, I. Ostanin, C. Gaidau, T. Dumitrica. Langmuir. 31(45), 12323 (2015). DOI: 10.1021/acs.langmuir.5b03208
17.
Itasca Consulting Group Inc., 2015. PFC3D (Particle Flow Code in Three Dimensions). Version 5.0. Itasca Consulting Group Inc., Minneapolis.
18.
T. Preclik, U. Ruede. Comp. Part. Mech. 2, 173 (2015). DOI: 10.1007/s40571-015-0047-6
19.
V. A. Kuzkin, I. E. Asonov. Phys. Rev. E. 86(5), 051301 (2012). DOI: 10.1103/PhysRevE.86.051301
20.
V. A. Kuzkin, A. M. Krivtsov. Letters on materials. 7(4), 455 (2017). DOI: 10.22226/2410‑3535‑2017‑4‑455‑458
21.
D. Potyondy, P. Cundall. Int. J. Rock Mech. & Min. Sci. 41(8), 1329 (2004). DOI: 10.1016/j.ijrmms.2004.09.011
22.
K. Iglberger, U. Ruede. Comp. Sci.‑Res. Dev. 25(1-2), 105 (2010). DOI: 10.1007/s00450‑010‑0114‑4
23.
D. Bartuschat, U. Ruede. Journ. Comp. Sci. 8, 1 (2015). DOI: 10.1016/j.jocs.2015.02.006
24.
C. Feichtinger, S. Donath, H. Köstler, J. Götz, U. Ruede. Journ. Comp. Sci. 2(2), 105 (2011). DOI: 10.1016/j.jocs.2011.01.004
25.
J. Götz, K. Iglberger, C. Feichtinger, S. Donath, U. Ruede. Par. Comp. 36(2-3), 142 (2010). DOI: 10.1016/j.parco.2010.01.005
26.
C. Ericson. Real-time collision detection. CRC Press (2004).
27.
K. Erleben, J. Sporring, K. Henriksen, K. Dohlman. Physics-based animation (graphics series). Charles River Media (2005).
28.
Y. Wang, G. Drozdov, E. Hobbie, T. Dumitrica. ACS Appl. Mat. Int. 9(15), 13611 (2017). DOI: 10.1021/acsami.7b01434
29.
M. P. Forum. MPI: A message-passing interface standard. Technical report, Knoxville, TN, USA (1994).
30.
G. Drozdov, I. Ostanin, I. Oseledets. J. Comp. Phys. 343, 110 (2017). DOI: 10.1016/j.jcp.2017.04.056