Toward large scale modeling of carbon nanotube systems with the mesoscopic distinct element method

I. Ostanin, P. Zhilyaev, V. Petrov, T. Dumitrica, S. Eibl, U. Ruede, V. Kuzkin show affiliations and emails
Received: 30 March 2018; Revised: 04 April 2018; Accepted: 05 April 2018
This paper is written in Russian
Citation: I. Ostanin, P. Zhilyaev, V. Petrov, T. Dumitrica, S. Eibl, U. Ruede, V. Kuzkin. Toward large scale modeling of carbon nanotube systems with the mesoscopic distinct element method. Lett. Mater., 2018, 8(3) 240-245
BibTex   https://doi.org/10.22226/2410-3535-2018-3-240-245

Abstract

A mesoscopic distinct element method enables large-scale modeling of carbon nanotube networks. Massively parallel dynamics engine allows studying self-assembly and mechanics of micrometer-size specimens.We introduce a new scalable and efficient implementation of the mesoscopic distinct element method for massively parallel numerical simulations of carbon nanotube systems. Carbon nanotubes are represented as chains of rigid bodies, linked by elastic bonds and dispersive van der Waals (vdW) forces. The Enhanced Vector Model formalism is employed here to capture the elastic deformation of nanotubes. Dispersive interactions between the neighboring nanotubes are described with the coarse-grained vdW potential. Time integration is performed using a velocity Verlet integration scheme with tunable damping in order to describe the energy dissipation to the implicit degrees of freedom. Due to the scalable Message Passing Interface (MPI) parallelization, enabled by rigid particle dynamics module (PE) of the waLBerla multiphysics framework, our method is capable of modeling large assemblies of carbon nanotubes. This advance enables us to move closer to the length and time scales required to extract representative mechanics of carbon nanotube materials. The promising scalability of the new implementation is probed in two examples of self-assembly of ultra-thin carbon nanotube films and carbon nanotube buckypapers, where formation of hierarchical networks of carbon nanotube bundles, storing both elastic and vdW adhesion energy is being observed. The relaxation of one cubic micrometer of buckypaper illustrates the code scalability.

References (30)

1. S. Iijima. Nature 354, 56 (1991). Crossref
2. R. H. Baughman. Science. 297, 787 (2002). Crossref
3. M. S. Dresselhaus, G. Dresselhaus, P. Avouris. (eds.) Carbon nanotubes: synthesis, structure, properties, and applications. Springer, Berlin-New York (2001).
4. R. Saito, G. Dresselhaus, M. S. Dresselhaus. Physical properties of carbon nanotubes. World Scientific, Singapore (1998).
5. B. Yakobson, C, Brabec, J. Bernholc. Phys. Rev. Lett. 76(14), 2511 (1996). Crossref
6. T. Dumitrica, M. Hua, B. Yakobson. Proc. Natl. Acad. Sci. U.S.A. 103(16), 6105 (2006). Crossref
7. D.-B. Zhang, T. Dumitrica. Appl. Phys. Lett. 93, 031919 (2008). Crossref
8. I. Nikiforov, D.-B. Zhang, R. James, T. Dumitrica. Appl. Phys. Lett. 96, 123107 (2010). Crossref
9. M. J. Buehler. Journ. Mat. Res. 21(11), 2855 (2006). Crossref
10. S. W. Cranford, M. J. Buehler. Nanotechnology. 21, 265706 (2010). Crossref
11. R. Mirzaeifar, Z. Qin, M. Buehler. Nanoscale. 7(12), 5435 (2015). Crossref
12. T. Anderson, E. Akatyeva, I. Nikiforov, D. Potyondy, R. Ballarini, T. Dumitrica. Journ. Nanotech. Eng. Med. 1(4), 0410009 (2010). Crossref
13. I. Ostanin, R. Ballarini, D. Potyondy, T. Dumitrica. Journ. Mech. Phys. Sol. 61(3), 762 (2013). Crossref
14. I. Ostanin, R. Ballarini, T. Dumitrica. Journ. Appl. Mech. 81(6), 061004 (2014). Crossref
15. I. Ostanin, R. Ballarini, T. Dumitrica. Journ. Mat. Res. 30(1), 19 (2015). Crossref
16. Y. Wang, I. Ostanin, C. Gaidau, T. Dumitrica. Langmuir. 31(45), 12323 (2015). Crossref
17. Itasca Consulting Group Inc., 2015. PFC3D (Particle Flow Code in Three Dimensions). Version 5.0. Itasca Consulting Group Inc., Minneapolis.
18. T. Preclik, U. Ruede. Comp. Part. Mech. 2, 173 (2015). Crossref
19. V. A. Kuzkin, I. E. Asonov. Phys. Rev. E. 86(5), 051301 (2012). Crossref
20. V. A. Kuzkin, A. M. Krivtsov. Letters on materials. 7(4), 455 (2017). Crossref
21. D. Potyondy, P. Cundall. Int. J. Rock Mech. & Min. Sci. 41(8), 1329 (2004). Crossref
22. K. Iglberger, U. Ruede. Comp. Sci.-Res. Dev. 25(1-2), 105 (2010). Crossref
23. D. Bartuschat, U. Ruede. Journ. Comp. Sci. 8, 1 (2015). Crossref
24. C. Feichtinger, S. Donath, H. Köstler, J. Götz, U. Ruede. Journ. Comp. Sci. 2(2), 105 (2011). Crossref
25. J. Götz, K. Iglberger, C. Feichtinger, S. Donath, U. Ruede. Par. Comp. 36(2-3), 142 (2010). Crossref
26. C. Ericson. Real-time collision detection. CRC Press (2004).
27. K. Erleben, J. Sporring, K. Henriksen, K. Dohlman. Physics-based animation (graphics series). Charles River Media (2005).
28. Y. Wang, G. Drozdov, E. Hobbie, T. Dumitrica. ACS Appl. Mat. Int. 9(15), 13611 (2017). Crossref
29. M. P. Forum. MPI: A message-passing interface standard. Technical report, Knoxville, TN, USA (1994).
30. G. Drozdov, I. Ostanin, I. Oseledets. J. Comp. Phys. 343, 110 (2017). Crossref

Cited by (3)

1.
Alexander V. Savin, Elena A. Korznikova, Sergey V. Dmitriev. Phys. Rev. B. 99(23) (2019). Crossref
2.
V.M. Gubarev, V.Y. Yakovlev, M.G. Sertsu, O.F. Yakushev, V.M. Krivtsun, Yu.G. Gladush, I.A. Ostanin, A. Sokolov, F. Schäfers, V.V. Medvedev, A.G. Nasibulin. Carbon. 155, 734 (2019). Crossref
3.
I. Ostanin, T. Dumitric─â, S. Eibl, U. Rüde. Journal of Applied Mechanics. 86(12) (2019). Crossref

Similar papers