Масштабируемое моделирование систем из углеродных нанотрубок при помощи мезомасштабного метода дискретного элемента

I. Ostanin, P. Zhilyaev, V. Petrov, T. Dumitrica, S. Eibl, U. Ruede, V. Kuzkin
Получена: 30 марта 2018; Исправлена: 04 апреля 2018; Принята: 05 апреля 2018
Цитирование: I. Ostanin, P. Zhilyaev, V. Petrov, T. Dumitrica, S. Eibl, U. Ruede, V. Kuzkin. Масштабируемое моделирование систем из углеродных нанотрубок при помощи мезомасштабного метода дискретного элемента. Письма о материалах. 2018. Т.8. №3. С.240-245
BibTex   DOI: 10.22226/2410-3535-2018-3-240-245

Аннотация на русском языке

A mesoscopic distinct element method enables large-scale modeling of carbon nanotube networks. Massively parallel dynamics engine allows studying self-assembly and mechanics of micrometer-size specimens.We introduce a new scalable and efficient implementation of the mesoscopic distinct element method for massively parallel numerical simulations of carbon nanotube systems. Carbon nanotubes are represented as chains of rigid bodies, linked by elastic bonds and dispersive van der Waals (vdW) forces. The Enhanced Vector Model formalism is employed here to capture the elastic deformation of nanotubes. Dispersive interactions between the neighboring nanotubes are described with the coarse-grained vdW potential. Time integration is performed using a velocity Verlet integration scheme with tunable damping in order to describe the energy dissipation to the implicit degrees of freedom. Due to the scalable Message Passing Interface (MPI) parallelization, enabled by rigid particle dynamics module (PE) of the waLBerla multiphysics framework, our method is capable of modeling large assemblies of carbon nanotubes. This advance enables us to move closer to the length and time scales required to extract representative mechanics of carbon nanotube materials. The promising scalability of the new implementation is probed in two examples of self-assembly of ultra-thin carbon nanotube films and carbon nanotube buckypapers, where formation of hierarchical networks of carbon nanotube bundles, storing both elastic and vdW adhesion energy is being observed. The relaxation of one cubic micrometer of buckypaper illustrates the code scalability.

Ссылки (30)

S. Iijima. Nature 354, 56 (1991). DOI: 10.1038/354056a0
R. H. Baughman. Science. 297, 787 (2002). DOI: 10.1126/science.1060928
M. S. Dresselhaus, G. Dresselhaus, P. Avouris. (eds.) Carbon nanotubes: synthesis, structure, properties, and applications. Springer, Berlin-New York (2001).
R. Saito, G. Dresselhaus, M. S. Dresselhaus. Physical properties of carbon nanotubes. World Scientific, Singapore (1998).
B. Yakobson, C, Brabec, J. Bernholc. Phys. Rev. Lett. 76(14), 2511 (1996). DOI: 10.1103/physrevlett.76.2511
T. Dumitrica, M. Hua, B. Yakobson. Proc. Natl. Acad. Sci. U.S.A. 103(16), 6105 (2006). DOI: 10.1073/pnas.0600945103
D.‑B. Zhang, T. Dumitrica. Appl. Phys. Lett. 93, 031919 (2008). DOI: 10.1063/1.2965465
I. Nikiforov, D.‑B. Zhang, R. James, T. Dumitrica. Appl. Phys. Lett. 96, 123107 (2010). DOI:10.1063/1.3368703
M. J. Buehler. Journ. Mat. Res. 21(11), 2855 (2006). DOI: 10.1557/jmr.2006.0347
S. W. Cranford, M. J. Buehler. Nanotechnology. 21, 265706 (2010). DOI: 10.1088/0957-4484/21/26/265706
R. Mirzaeifar, Z. Qin, M. Buehler. Nanoscale. 7(12), 5435 (2015). DOI: 10.1039/C4NR06669C
T. Anderson, E. Akatyeva, I. Nikiforov, D. Potyondy, R. Ballarini, T. Dumitrica. Journ. Nanotech. Eng. Med. 1(4), 0410009 (2010). DOI: 10.1115/1.4002609
I. Ostanin, R. Ballarini, D. Potyondy, T. Dumitrica. Journ. Mech. Phys. Sol. 61(3), 762 (2013). DOI: 10.1016/j.jmps.2012.10.016
I. Ostanin, R. Ballarini, T. Dumitrica. Journ. Appl. Mech. 81(6), 061004 (2014). DOI: 10.1115/1.4026484
I. Ostanin, R. Ballarini, T. Dumitrica. Journ. Mat. Res. 30(1), 19 (2015). DOI: 10.1557/jmr.2014.279
Y. Wang, I. Ostanin, C. Gaidau, T. Dumitrica. Langmuir. 31(45), 12323 (2015). DOI: 10.1021/acs.langmuir.5b03208
Itasca Consulting Group Inc., 2015. PFC3D (Particle Flow Code in Three Dimensions). Version 5.0. Itasca Consulting Group Inc., Minneapolis.
T. Preclik, U. Ruede. Comp. Part. Mech. 2, 173 (2015). DOI: 10.1007/s40571-015-0047-6
V. A. Kuzkin, I. E. Asonov. Phys. Rev. E. 86(5), 051301 (2012). DOI: 10.1103/PhysRevE.86.051301
V. A. Kuzkin, A. M. Krivtsov. Letters on materials. 7(4), 455 (2017). DOI: 10.22226/2410‑3535‑2017‑4‑455‑458
D. Potyondy, P. Cundall. Int. J. Rock Mech. & Min. Sci. 41(8), 1329 (2004). DOI: 10.1016/j.ijrmms.2004.09.011
K. Iglberger, U. Ruede. Comp. Sci.‑Res. Dev. 25(1-2), 105 (2010). DOI: 10.1007/s00450‑010‑0114‑4
D. Bartuschat, U. Ruede. Journ. Comp. Sci. 8, 1 (2015). DOI: 10.1016/j.jocs.2015.02.006
C. Feichtinger, S. Donath, H. Köstler, J. Götz, U. Ruede. Journ. Comp. Sci. 2(2), 105 (2011). DOI: 10.1016/j.jocs.2011.01.004
J. Götz, K. Iglberger, C. Feichtinger, S. Donath, U. Ruede. Par. Comp. 36(2-3), 142 (2010). DOI: 10.1016/j.parco.2010.01.005
C. Ericson. Real-time collision detection. CRC Press (2004).
K. Erleben, J. Sporring, K. Henriksen, K. Dohlman. Physics-based animation (graphics series). Charles River Media (2005).
Y. Wang, G. Drozdov, E. Hobbie, T. Dumitrica. ACS Appl. Mat. Int. 9(15), 13611 (2017). DOI: 10.1021/acsami.7b01434
M. P. Forum. MPI: A message-passing interface standard. Technical report, Knoxville, TN, USA (1994).
G. Drozdov, I. Ostanin, I. Oseledets. J. Comp. Phys. 343, 110 (2017). DOI: 10.1016/j.jcp.2017.04.056