Field electron emission from a copper-based composite reinforced with carbon nanotubes

R.K. Khisamov ORCID logo , K.S. Nazarov, P.V. Trinh ORCID logo , A.A. Nazarov, D.D. Phuong, R.R. Mulyukov show affiliations and emails
Accepted  04 November 2019
Citation: R.K. Khisamov, K.S. Nazarov, P.V. Trinh, A.A. Nazarov, D.D. Phuong, R.R. Mulyukov. Field electron emission from a copper-based composite reinforced with carbon nanotubes. Lett. Mater., 2019, 9(4s) 566-570


Carbon nanotubes in the form of protruding clusters on the surface of Cu-4 wt.% CNT compositeField electron emission from a copper based composite reinforced with carbon nanotubes (Cu-4 wt.% CNT) was studied. The composite samples were processed by mixing copper powders and carbon nanotubes (CNTs) in a ball mill followed by hot isostatic pressing. To obtain a more even distribution of CNTs, the samples were subjected to high pressure torsion (HPT). After etching, clusters of CNTs were observed on the surface of the sample. The field electron emission from the sample was measured by means of a vacuum diode consisting of an anode and cathode. The composite sample served as cathode. The dependence of the current on the voltage applied between the anode and sample was determined. The current values of 5 and 200 µA were found at the potential differences of 2200 and 3400 V, which correspond to the values of electric field 9 and 13.5 V / µm, respectively. The increase of voltage above 3400 V led to initiation of microdischarge between the anode and sample. Under the same conditions, no current was detected with pure Cu samples. It is assumed that the current measured on the anode with the sample of Cu-CNT composite is the current of electrons emitted from the CNT clusters located on the surface of the sample and that this emission is of field nature. An analysis of the dependence of the current on the voltage for the composite samples is done in Fowler-Nordheim coordinates.

References (30)

1. S. Iijima. Nature. 354, 56 (1991). Crossref
2. E. W. Wong, P. E. Sheehan, C. M. Lieber. Science. 277, 1971 (1997). Crossref
3. J.-P. Salvetat, G. A. D. Briggs, J.-M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stockli, N. A. Burnham, L. Forro. Physical Review Letters. 82, 944 (1999). Crossref
4. A. Agarwal, S. R. Bakshi, D. Lahiri. Carbon nanotubes reinforced metal matrix composites. Boca Raton, CRC Press (2018). 325 p. Crossref
5. S. Suárez, E. Ramos-Moore, B. Lechthaler, F. Mücklich. Carbon. 70, 173 (2014). Crossref
6. V. T. Pham, H. T. Bui, B. T. Tran, V. T. Nguyen, D. Q. Le, X. T. Than et al. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2, 015006 (2011). Crossref
7. A. K. Shukla, N. Nayan, S. V. S. N. Murty, S. C. Sharma, P. Chandran, S. R. Bakshi, K. M. George. Materials Science and Engineering A. 560, 365 (2013). Crossref
8. M. Jafari, M. H. Abbasi, M. H. Enayati, F. Karimzadeh. Advanced Powder Technology. 23, 205 (2012). Crossref
9. A. Kasperski, A. Weibel, C. Estournès, Ch. Laurent, A. Peigney. Carbon. 53, 62 (2013). Crossref
10. Ch. Guiderdoni, C. Estournès, A. Peigney, A. Weibel, V. Turq, Ch. Laurent. Carbon. 49, 4535 (2011). Crossref
11. P. V. Trinh, N. V. Luan, D. D. Phuong, P. N. Minh, A. Weibel, D. Mesguich, C. Laurent. Composites: Part A. 105, 126 (2018). Crossref
12. M. R. Akbarpour, S. Alipour, M. Farvizi, H. S. Kim. Achieve of Civil and Mechanical Engineering. 19, 694 (2019). Crossref
13. R. Murugesan, M. Gopal, G. Murali. Applied Surface Science. 495, 143542 (2019). Crossref
14. B. Duan, Y. Zhou, D. Wang, Y. Zhao. Journal of Alloys and Compounds. 771, 498 (2019). Crossref
15. T. Tokunaga, K. Kaneko, Z. Horita. Materials Science and Engineering A. 490, 300 (2008). Crossref
16. S-H. Joo, S. C. Yoon, C. S. Lee, D. H. Nam, S. H. Hong, H. S. Kim. Journal of Materials Science. 45, 4652 (2010). Crossref
17. R. K. Khisamov, K. S. Nazarov, L. R. Zubairov et al. Physics of the Solid State. 57, 1206 (2015). Crossref
18. R. K. Khisamov, K. S. Nazarov, S. N. Sergeev, R. R. Kabirov, R. R. Mulyukov, A. A. Nazarov. Letters on Materials. 5, 119 (2015). in Russian [Р. Х. Хисамов, К. С. Назаров, С. Н. Сергеев, Р. Р. Кабиров, Р. Р. Мулюков, А. А. Назаров. Письма о материалах. 5, 119 (2015).]. Crossref
19. D. D. Phuong, P. V. Trinh, N. V. An, N. V. Luan, P. N. Minh, R. Kh. Khisamov, K. S. Nazarov, L. R. Zubairov, R. R. Mulyukov, A. A. Nazarov. Journal of Alloys and Compounds. 613, 68 (2014). Crossref
20. S. Arai, T. Saito, M. Endo. Electrochemical and Solid-State Letters. 11, D72 (2008). Crossref
21. C. B. Mo, J. W. Hwang, S. I. Cha, S. H. Hong. Carbon. 47, 1276 (2009). Crossref
22. M. Deng, G. Ding, Y. Wang, H. Wu, Y. Yao, L. Zhu. Carbon. 47, 3466 (2009). Crossref
23. M. Markushev, E. Avtokratova, O. Sitdikov. Letters on Materials. 7, 459 (2017). Crossref
24. R. Kh. Khisamov, K. S. Nazarov, A. V. Irzhak, R. U. Shayakhmetov, I. I. Musabirov, R. R. Timirayev, Y. M. Yumaguzin, R. R. Mulyukov. Letters on Materials. 9, 212 (2019). Crossref
25. V. N. Danilenko, S. N. Sergeev, J. A. Baimova, G. F. Korznikova, K. S. Nazarov, R. K. Khisamov, A. M. Glezer, R. R. Mulyukov. Materials Letters. 236, 51 (2019). Crossref
26. A. I. Benedik, T. M. Krachkovskaya, V. I. Shesterkin. Technical Physics. 60, 1535 (2015). Crossref
27. R. H. Fowler, L. Nordheim. Proceedings of the 8 Royal Society of London. 119, 173 (1928). Crossref
28. A. V. Eletskii. Physics-Uspekhi. 45, 369 (2002). Crossref
29. Y. Song, J. Li, Q. Wu, C. Yi, H. Wu, Z. Chen, W. Ou-Yang. Journal of Alloys and Compounds. In Press (2019). Crossref
30. P. Vincent, S. T. Purcell, C. Journet, V. T. Binh. Physical Review B. 66, 075406 (2002). Crossref

Similar papers


1. The State task of IMSP RAS - # АААА-А17-117041310213-0
2. Presidium of the Russian Academy of Sciences - The Basic Research Program I.7 “New developments in promising areas of energetics, mechanics and robotics”