Single-walled carbon nanotube-reinforced composites based on ZrO2 obtained by vacuum pressureless sintering

A.A. Leonov, E.V. Abdulmenova, M.A. Rudmin, J. Li show affiliations and emails
Received 29 June 2021; Accepted 09 October 2021;
This paper is written in Russian
Citation: A.A. Leonov, E.V. Abdulmenova, M.A. Rudmin, J. Li. Single-walled carbon nanotube-reinforced composites based on ZrO2 obtained by vacuum pressureless sintering. Lett. Mater., 2021, 11(4) 452-456
BibTex   https://doi.org/10.22226/2410-3535-2021-4-452-456

Abstract

In the microstructure of ZrO2 based composites, both undivided, entangled bundles/aggregates of SWCNTs and individual nanotubes are observed, which together form a continuous reinforcing structure, which leads to a refinement of the grain size of the composites.The results of a study of sintered composites based on yttria-stabilized zirconia (ZrO2) reinforced with single-walled carbon nanotubes (SWCNTs) are presented in this paper. Mixing of ZrO2 nanopowder with SWCNTs was carried out in ethanol using an ultrasonic bath and a magnetic stirrer. Composite powders with 0.1, 0.5 and 1 wt.% SWCNTs and ZrO2 nanopowder were pressed into compacts at a pressure of 100 MPa, and then they were sintered in a high temperature vacuum furnace for 2 h at a temperature of 1500°C with a heating rate of 300°C / h. Changes in the microstructure, phase composition, and mechanical properties were investigated depending on the SWCNT content in the samples. It was found that in the selected sintering mode, high density samples (99.2 – 97.5 %) were obtained. It was found by scanning electron microscopy that undivided, entangled SWCNT bundles / aggregates and individual nanotubes, which together formed a continuous reinforcing structure, were observed in the microstructure of the composites. Moreover, SWCNTs led to the refinement of the microstructure of composites; the average grain size of composites was 16 % lower than that of ZrO2 ceramics. It was found by X-Ray diffraction that only high temperature modifications of zirconia (cubic and tetragonal) were present in ZrO2 ceramics and composites, and SWCNTs led to a slight decrease in the size of coherent scattering domain. It was found by the Vickers indentation method that the composite based on ZrO2 with 0.5 wt.% SWCNT was optimal in terms of mechanical properties, since it had the highest microhardness (13.6 GPa, which was 6 % higher than that of ZrO2 ceramics) and had a 12 % higher fracture toughness.

References (21)

1. Y. Arai, R. Inoue, K. Goto, Y. Kogo. Ceram. Int. 45, 14481 (2019). Crossref
2. N. Yu. Cherkasova, A. A. Bataev, S. V. Veselov, R. I. Kuzmin, N. S. Stukacheva, T. A. Zimoglyadova. Letters on Materials. 9 (2), 179 (2019). (in Russian) [Н. Ю. Черкасова, А. А. Батаев, С. В. Веселов, Р. И. Кузьмин, Н. С. Стукачева, Т. А. Зимоглядова. Письма о материалах. 9 (2), 179 (2019).]. Crossref
3. M. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff. Science. 287, 637 (2000). Crossref
4. A. Leonov, M. Kalashnikov, J. Li, E. Abdulmenova, M. Rudmin, Y. Ivanov. 2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE). Tomsk, Russia (2020) 1169. Crossref
5. A. S. Buyakov, Y. A. Mirovoy, A. Yu. Smolin, S. P. Buyakova. Ceram. Int. 47, 10582 (2021). Crossref
6. R. Hassan, A. Nisar, S. Ariharan, F. Alam, A. Kumar, K. Balani. Mater. Sci. Eng. A. 704, 329 (2017). Crossref
7. S. Lamnini, C. Balázsi, K. Balázsi. Wear. 430 - 431, 280 (2019). Crossref
8. F. Rodríguez-Rojas, R. Cano-Crespo, O. Borrero-López, A. Domínguez-Rodríguez, A. L. Ortiz. J. Eur. Cer. Soc. 41, 3595 (2021). Crossref
9. I. Momohjimoh, N. Saheb, M. A. Hussein, T. Laoui, N. Al-Aqeeli. Ceram. Int. 46, 16008 (2020). Crossref
10. V. B. Kul’met’eva, S. E. Porozova, V. G. Gilev, D. S. Vokhmyanin. Refract. Ind. Ceram. 59, 599 (2019). Crossref
11. N. E. Hamidon, S. A. Molok, H. Manshor, A. Z. A. Azhar, N. A. Rejab, Z. A. Ahmad, A. M. Ali. AIP Conf. Proc. 2068, 020005 (2019). Crossref
12. A. A. Leonov, J. Li, M. P. Kalashnikov, M. A. Rudmin, O. L. Khasanov. IOP Conf. Ser.: Mater. Sci. Eng. 1100, 012049 (2021). Crossref
13. A. Reyes-Rojas, C. Dominguez-Rios, A. Garcia-Reyes, A. Aguilar-Elguezabal, M. H. Bocanegra-Bernal. Mater. Res. Exp. 5, 105602 (2018). Crossref
14. A. A. Leonov, E. V. Abdulmenova. IOP Conf. Ser.: Mater. Sci. Eng. 511, 012001 (2019). Crossref
15. A. Leonov. Mater. Today Proc. 11, 66 (2019). Crossref
16. G. R. Anstis, P. Chantikul, B. N. Lawn, D. B. Marshall. J. Am. Ceram. Soc. 64, 533 (1981). Crossref
17. A. A. Leonov, E. S. Dvilis, O. L. Khasanov, V. D. Paygin, M. P. Kalashnikov, M. S. Petukevich, A. A. Panina. Nanotechnol. Russia. 14, 118 (2019). Crossref
18. A. A. Leonov, A. O. Khasanov, V. A. Danchenko, O. L. Khasanov. IOP Conf. Ser.: Mater. Sci. Eng. 286, 012034 (2017). Crossref
19. A. A. Leonov, E. V. Abdulmenova, M. P. Kalashnikov. Inorg. Mater. Appl. Res. 12, 482 (2021). Crossref
20. A. A. Leonov, Yu. F. Ivanov, M. P. Kalashnikov, E. V. Abdulmenova, V. D. Paygin, A. D. Teresov. J. Phys.: Conf. Ser. 1393, 012106 (2019). Crossref
21. A. A. Leonov, E. V. Abdulmenova, M. P. Kalashnikov, Ts. Li. Voprosy Materialovedeniya. 4 (104), 132 (2020). (in Russian) [А. А. Леонов, Е. В. Абдульменова, М. П. Калашников, Ц. Ли. Вопросы материаловедения. 4 (104), 132 (2020).]. Crossref

Similar papers