Molecular dynamics investigation of atomic mixing and mechanical properties of Al / Ti interface

P.V. Polyakova, S.A. Shcherbinin, J.A. Baimova show affiliations and emails
Accepted  09 December 2021
Citation: P.V. Polyakova, S.A. Shcherbinin, J.A. Baimova. Molecular dynamics investigation of atomic mixing and mechanical properties of Al / Ti interface. Lett. Mater., 2021, 11(4s) 561-565


Molecular dynamics simulation is utilized to analyze the role of applied compressive and shear strain on the mechanical performances of Al/Ti composite. Mixing of atoms near the interface between Al and Ti during deformation is analysed.With the urgent lightweight demand in the aerospace engineering and transportation industries, Al / Ti composite structures have attracted much interest due to their excellent performances compared with conventional materials. Computational simulations have contributed to the understanding of both fundamental and practical aspects of fabrication of such composites and studying of their properties. The present work reports the results of studies based on molecular dynamics simulations on the mechanical properties of an Al / Ti composite obtained by compression combined with shear strain. Tensile properties of a nanosized Ti / Al composite consisting of two single crystals obtained after different compression rates are analyzed. The loading scheme applied in the present work is a simplification of the scenario experimentally realized previously to obtain Al-matrix composites. It is confirmed that uniaxial compression combined with shear deformation is an effective way to obtain the composite structure since severe plastic deformation facilitates the diffusion process. The results indicated that a symmetrical atomic movement took place in the Ti / Al interface during deformation. However, Al atoms diffuse into the Ti block easier than Ti atoms into the Al block. Tensile tests showed that fracture took place in the Al part of the final composite sample, which means that the interlayer region where the mixing of Ti and Al atoms is observed is stronger than the pure Al part.

References (32)

1. Y. Du, G. Fan, T. Yu, N. Hansen, L. Geng, X. Huang. Mater. Sci. Eng. A. 572, 673 (2016). Crossref
2. M. Yamaguchi, H. Inui, K. Ito. Acta Mater. 48 (1), 307 (2000). Crossref
3. R. R. Mulyukov, G. F. Korznikova, K. S. Nazarov, R. K. Khisamov, S. N. Sergeev, R. U. Shayachmetov, G. R. Khalikova, E. A. Korznikova. Acta Mech. 232 (5), 1815 (2021). Crossref
4. G. F. Korznikova, E. A. Korznikova, K. S. Nazarov, R. U. Shayakhmetov, R. K. Khisamov, G. R. Khalikova, R. R. Mulyukov. Adv. Eng. Mater. 23 (1), 2000757 (2020). Crossref
5. G. R. Khalikova, G. F. Korznikova, K. S. Nazarov, R. U. Khisamov, S. N. Sergeev, R. U. Shayakhmetov, R. R. Mulyukov. Lett. Mater. 10 (4), 475 (2020). (in Russian) [Г. Р. Халикова, Г. Ф. Корзникова, К. С. Назаров, Р. Х. Хисамов, С. Н. Сергеев, Р. У. Шаяхметов, Р. Р. Мулюков. Письма о материалах. 10 (4), 475 (2020).]. Crossref
6. V. N. Danilenko, S. N. Sergeev, J. A. Baimova, G. F. Korznikova, K. S. Nazarov, R. U. Khisamov, A. Glezer, R. R. Mulyukov. Mater. Lett. 236, 51 (2019). Crossref
7. A. Bartkowska, P. Bazarnik, Y. Huang, M. Lewandowska, T. G. Langdon. Mater. Sci. Eng. A. 799, 140114 (2021). Crossref
8. K. Ohishi, K. Edalati, H. S. Kim, K. Hono, Z. Horita. Acta Mater. 61 (9), 3482 (2013). Crossref
9. P. Bazarnik, A. Bartkowska, B. Romelczyk-Baishya, B. Adamczyk- Cieślak, J. Dai, Y. Huang, M. Lewandowska, T. G. Langdon. Jour. Alloys Comp. 846, 156380 (2020). Crossref
10. A. A. Nazarov, R. R. Mulyukov. Nanostructured Materials. In: Handbook of NanoScience, Engineering and Technology. (Ed. by W. A. Goddard III, D. Brenner, S. E. Lyshevski, G. J. Iafrate). CRC Press, Boca Raton (2002) pp. 22-1-22-41.
11. L. Liu, Q. Deng, M. Su, M. An, R. Wang. Superlattices and Microstructures. 135, 106272 (2019). Crossref
12. G. J. Shi, J. G. Wang, Z. Y. Hou, Z. Wang, R. S. Liu. Modern Phys. Lett. B. 31 (27), 1750247 (2017). Crossref
13. B. Li, X. Zhai, Y. Cao, H. Zhao, Z. Wang, H. Liu, G. Fan. Forests. 9 (7), 397 (2018). Crossref
14. A. Behera, M. Ghosh. Mater. Today: Proc. 5 (9), 20647 (2018). Crossref
15. P. V. Polyakova, J. A. Baimova. IOP Conf. Ser.: Mater. Sci. Eng. 1008, 012052 (2021). Crossref
16. P. V. Polyakova, K. S. Nazarov, R. K. Khisamov, J. A. Baimova. Jour. Phys. Conf. Ser. 1435, 012065 (2020). Crossref
17. P. V. Polyakova, J. A. Pukhacheva, S. A. Shcherbinin, J. A. Baimova, R. R. Mulyukov. Appl. Sci. 11 (15), 6801 (2021). Crossref
18. E. V. Levchenko, A. V. Evteev, G. G. LÖwisch, I. V. Belova, G. E. Murch. Intermetallics. 22, 193 (2012). Crossref
19. E. V. Levchenko, A. V. Evteev, T. Lorscheider, I. V. Belova, G. E. Murch. Comput. Mater. Sci. 79, 316 (2013). Crossref
20. G. M. Poletaev, I. V. Zorya, M. D. Starostenkov. Jour. Micromech. Molec. Phys. 03, 1850001 (2018). Crossref
21. M. A. Ghaffari, Y. Zhang, S. Xiao. Jour. Micromech. Molec. Phys. 02, 1750009 (2017). Crossref
22. G. M. Poletaev, R. Rakitin, M. D. Starostenkov. Lett. Mater. 9, 207 (2019). Crossref
23. P. V. Zakharov, G. Poletaev, M. D. Starostenkov, A. Cherednichenko. Lett. Mater. 7, 296 (2017). (in Russian) [П. В. Захаров, Г. М. Полетаев, М. Д. Старостенков, А. И. Чередниченко. Письма о материалах. 7, 296 (2017).]. Crossref
24. R. I. Babicheva, S. V. Dmitriev, L. Bai, Y. Zhang, S. W. Kok, G. Kang, K. Zhou. Comput. Mater. Sci. 117, 445 (2016). Crossref
25. LAMMPS: (accessed on 7 Dec. 2021).
26. OVITO: (accessed on 7 Dec. 2021).
27. Common neighbor analysis (CNA): (accessed on 7 Dec. 2021).
28. R. R. Zope, Y. Mishin. Phys. Rev. B. 68 (2), 024102 (2003). Crossref
29. M. Kanani, A. Hartmaier, R. Janisch. Acta Mater. 106, 208 (2016). Crossref
30. D. Xu, H. Wang, R. Yang, P. Veyssiere. Acta Mater. 56 (5), 1065 (2008). Crossref
31. J. Chen, W. Chen, C. Wang. Appl. Phys. A. 126 (7), 493 (2020). Crossref
32. P. Li, L. Wang, B. Wang, S. Yan, M. Meng, X. Ji, K. Xue. Vacuum. 195, 110637 (2022). Crossref

Similar papers


1. Russian Science Foundation - 20-72-10112
2. State Assignment of IMSP RAS - -