Melting temperature of Ti and TiAl nanoparticles in vacuum and in Al matrix depending on their diameter: molecular dynamics study

G.M. Poletaev ORCID logo , A.A. Sitnikov, V.Y. Filimonov show affiliations and emails
Received 09 April 2021; Accepted 26 April 2021;
Citation: G.M. Poletaev, A.A. Sitnikov, V.Y. Filimonov. Melting temperature of Ti and TiAl nanoparticles in vacuum and in Al matrix depending on their diameter: molecular dynamics study. Lett. Mater., 2021, 11(2) 204-208
BibTex   https://doi.org/10.22226/2410-3535-2021-2-204-208

Abstract

The dependence of the melting temperature of Ti and TiAl nanoparticles on their diameter in vacuum and in Al matrix is studied by the method of molecular dynamicsThe dependence of the melting temperature of Ti and TiAl nanoparticles on their diameter in vacuum and in Al matrix was studied by the method of molecular dynamics using EAM potentials of Zope and Mishin. Particles with a diameter of 2.5 to 12 nm were considered. The obtained values of the melting point are in good agreement with the approximation curves constructed on the basis that the decrease in the melting temperature is proportional to the ratio of the surface area of the particle to its volume. Wherein the values of the melting temperature of Ti and TiAl particles in the aluminum matrix turned out to be lower than those of particles in vacuum, which is explained by the smearing and disordering of the interface due to mutual diffusion. As the size of particles in vacuum and in aluminum increased, the values of their melting points tended to the same value, which is explained by the decrease in the role of the diffusion-blurred interface with an increase in the particle diameter. The particles began to melt from the surface. The velocity of movement of the melting front depended on temperature and increased with increasing temperature. In the case of particles in aluminum matrix, at temperatures close to the particle melting point, mutual diffusion was significantly accelerated due to melting of the particle boundary layer. Al atoms penetrating into the particle accelerated the movement of the melting front, rapidly occupying the next destroyed layer of the particle.

References (24)

1. S. G. Grigorenko, G. M. Grigorenko, O. M. Zadorozhnuk. Modern electrometallurgy. 128 (3), 51 (2017). (in Russian) [С. Г. Григоренко, Г. М. Григоренко, О. М. Задорожнюк. Современная электрометаллургия. 128 (3), 51 (2017).]. Crossref
2. J. Lapin. Proceedings of the Metal. 19 (21.5), 2019 (2009).
3. T. Tetsui. Rare Metals. 30, 294 (2011). Crossref
4. T. Voisin, J.-P. Monchoux, A. Couret. In: Spark Plasma Sintering of Materials (Ed. by P. Cavaliere). Springer, Switzerland (2019) pp. 713 - 737.
5. V. V. Boldyrev, K. Tkacova. Journal of Materials Synthesis and Processing. 8 (3), 121 (2000). Crossref
6. V. Y. Filimonov, M. A. Korchagin, N. Z. Lyakhov, I. A. Dietenberg, A. N. Tyumentsev. Powder Technology. 235, 606 (2013). Crossref
7. M. V. Loginova, V. I. Yakovlev, V. Yu. Filimonov, A. A. Sitnikov, A. V. Sobachkin, S. G. Ivanov, A. V. Gradoboev. Letters on Materials. 8 (2), 129 (2018). (in Russian) [М.В. Логинова, В.И. Яковлев, В.Ю. Филимонов, А.А. Ситников, А.В. Собачкин, С.Г. Иванов, А.В. Градобоев. Письма о материалах. 8 (2), 129 (2018).]. Crossref
8. E. L. Nagaev. Soviet Physics Uspekhi. 35 (9), 747 (1992). Crossref
9. Ph. Buffat, J.-P. Borel. Phys. Rev. A. 13, 2287 (1976). Crossref
10. G. L. Allen, R. A. Bayles, W. W. Gile, W. A. Jesser. Thin Solid Films. 144 (2), 297 (1986). Crossref
11. Т. Castro, R. Reifenberger, E. Choi, R. P. Andres. Phys. Rev. B. 42, 8548 (1990). Crossref
12. V. M. Samsonov, S. S. Kharechkin, S. L. Gafner, L. V. Redel›, Yu. Ya. Gafner. Crystallography Reports. 54 (3), 526 (2009). Crossref
13. I. V. Chepkasov, Y. Y. Gafner, L. V. Redel’, M. A. Vysotin. Physics of the Solid State. 59 (10), 2076 (2017). Crossref
14. G. M. Poletaev. Molecular dynamics research (MDR). Certificate of state registration of a computer programNo. 2015661912, 12.11.2015. (in Russian) [Г. М. Полетаев.Molecular dynamics research (MDR). Свидетельство о государственной регистрации программы для ЭВМ № 2015661912 от 12.11.2015.].
15. R. R. Zope, Y. Mishin. Phys. Rev. B. 68, 024102 (2003). Crossref
16. Y.-K. Kim, H.-K. Kim, W.-S. Jung, B.-J. Lee. Computational Materials Science. 119, 1 (2016). Crossref
17. Q.-X. Pei, M. H. Jhon, S. S. Quek, Z. Wu. Computational Materials Science. 188, 110239 (2021). Crossref
18. E. V. Levchenko, A. V. Evteev, T. Lorscheider, I. V. Belova, G. E. Murch. Computational Materials Science. 79, 316 (2013). Crossref
19. G. M. Poletaev, I. V. Zorya. Journal of Experimental and Theoretical Physics. 131 (3), 432 (2020). Crossref
20. G. M. Poletaev, I. V. Zorya, R. Y. Rakitin, M. A. Iliina. Materials Physics and Mechanics. 42 (4), 380 (2019). Crossref
21. R. Yu. Rakitin, G. M. Poletaev, M. S. Aksenov, M. D. Starostenkov. Technical Physics Letters. 31 (8), 650 (2005). Crossref
22. G. M. Poletaev, M. D. Starostenkov. Technical Physics Letters. 29 (6), 454 (2003). Crossref
23. W.-L. Chan, R. S. Averback, D. G. Cahill, Y. Ashkenazy. Physical Review Letters. 102, 095701 (2009). Crossref
24. M. I. Mendelev, F. Zhang, H. Song, Y. Sun, C. Z. Wang, K. M. Ho. The Journal of Chemical Physics. 148, 214705 (2018). Crossref

Similar papers

Funding