Simulation of metal-graphene composites by molecular dynamics: a review

L.R. Safina, J.A. Baimova, K.A. Krylova, R.T. Murzaev, R.R. Mulyukov show affiliations and emails
Received 10 August 2020; Accepted 12 August 2020;
Citation: L.R. Safina, J.A. Baimova, K.A. Krylova, R.T. Murzaev, R.R. Mulyukov. Simulation of metal-graphene composites by molecular dynamics: a review. Lett. Mater., 2020, 10(3) 351-360
BibTex   https://doi.org/10.22226/2410-3535-2020-3-351-360

Abstract

Pressure-strain curves for Ni-graphene systems under hydrostatic tension at 0 K and corresponding snapshots of composite at different strain. Ni atoms are shown by blue and C atoms are shown by red.Fabrication of the new composite materials with improved mechanical characteristics is of high interest nowadays. Simulation methods can considerably improve understanding of the interaction between the graphene and metal phase, even in the atomistic level. In the present work, the simulation of graphene-metal composites by molecular dynamics is reviewed. Both experiments and simulation results have shown that the metal matrix can be reinforced with graphene flakes, and the overall mechanical properties of the final composite structure can be significantly improved. Two basic types of metal-graphene composite structures are considered: (i) metal matrix strengthens by graphene flakes and (ii) crumpled graphene (the porous structure that consists of crumpled graphene flakes connected by van der Waals forces) as the matrix for metal nanoparticles. Several different types of interatomic potentials like pairwise Lennard-Jones or Morse or complex bond order potentials for the description of metal-carbon interaction are presented and discussed. It is shown that even simple interatomic potentials can be effectively used for the molecular dynamics simulation of graphene-metal composites. Particular attention is paid to graphene-Ni composites obtained by deformation and heat treatment from crumpled graphene with pores filled with Ni nanoparticles. It is shown, that high-temperature compression can be effectively used for the fabrication of the graphene-Ni composite with improved mechanical properties.

References (83)

1. W. Hong, H. Bai, Y. Xu, Z. Yao, Z. Gu, G. Shi. J. Phys. Chem. C. 114 (4), 1822 (2010). Crossref
2. G. Williams, B. Seger, P. V. Kamat. ACS Nano. 2 (7), 1487 (2008). Crossref
3. R S. Sundaram, M. Steiner, H.-Y. Chiu, M. Engel, A. A. Bol, R. Krupke, M. Burghard, K. Kern, P. Avouris. Nano Lett. 11 (9), 3833 (2011). Crossref
4. E. H. Hwang, S. Adam, S. Das Sarma. Phys. Rev. Lett. 98, 186806 (2007). Crossref
5. S. Adam, E. H. Hwang, V. M. Galitski, S. Das Sarma. Proc. Natl. Acad. Sci. U. S. A. 104, 18392 (2007). Crossref
6. M. I. Katsnelson, F. Guinea, A. K. Geim. Phys. Rev. B. 79, 195426 (2009). Crossref
7. K. M. McCreary, K. Pi, A. G. Swartz, W. Han, W. Bao, C. N. Lau, F. Guinea, M. I. Katsnelson, R. K. Kawakami. Phys. Rev. B. 81, 115453 (2010). Crossref
8. A. G. Swartz, J. R. Chen, K. M. McCreary, P. M. Odenthal, W. Han, R. K. Kawakami. Phys. Rev. B. 87, 075455 (2013). Crossref
9. P. Zhang, J.-T. Li, J.-W. Meng, A.-Q. Jiang, J. Zhuang, X.-J. Ning. AIP Adv. 7, 035101 (2017). Crossref
10. A. Klemenz, L. Oastewka, S. G. Balakrishna, A. Caron, R. Bennewitz, M. Moseler. Nano Lett. 14 (12), 7145 (2014). Crossref
11. Y. Kim, J. Lee, M. S. Yeom, J. W. Shin, H. Kin, Y. Cui, J. W. Kysar, J. Hone, Y. Jung, S. Jeon, S. M. Han. Nat. Commun. 4, 2114 (2013). Crossref
12. H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley. Chem. Phys. Lett. 260, 471 (1996). Crossref
13. P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smally. Chem. Phys. Lett. 313, 91 (1999). Crossref
14. Y. Ogawa, B. Hu, C. M. Orofeo, M. Tsuji et al. J. Phys. Chem. Lett. 3 (2), 219 (2012). Crossref
15. H. Ago, Y. Ito, N. Mizuta, K. Yoshida, B. Hu et al. ACS Nano. 4 (12), 7407 (2010). Crossref
16. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim et al. Nature. 457, 706 (2009). Crossref
17. T. Iwasaki, H. J. Park, M. Konuma, D. S. Lee, J. H. Smet, U. Starke. Nano Lett. 11 (1), 79 (2011). Crossref
18. S. Yoshii, K. Nozawa, K. Toyoda, N. Matsukawa, A. Odagawa, A. Tsujimura. Nano Lett. 11 (7), 2628 (2011). Crossref
19. J. Tersoff. Phys. Rev. B. 39 (8), 5566 (1989). Crossref
20. D. W. Brenner. Phys. Rev. B. 42, 9458 (1990). Crossref
21. S. J. Stuart, A. B. Tutein, J. A. Harrison. J. Chem. Phys. 112 (14), 6472 (2000). Crossref
22. J. A. Baimova, B. Liu, S. V. Dmitriev, K. Zhou. J. Phys. D: Appl. Phys. 48 (9), 095302 (2015). Crossref
23. L. Bai, N. Srikanth, E. A. Korznikova, J. A. Baimova, S. V. Dmitriev, K. Zhou. Wear. 372 - 373, 12 (2017). Crossref
24. G. Dhaliwal, P. B. Nair, C. V. Singh. Carbon. 142, 300 (2019). Crossref
25. H. N. Pishkenari, P. G. Ghanbari. Current Applied Physics. 17 (1), 72 (2017). Crossref
26. Z. D. Sha, P. S. Branicio, Q. X. Pei, V. Sorkin, Y. W. Zhang. Comp. Mat. Sci. 67, 146 (2013). Crossref
27. A. Kuz’kin, A. M. Krivtsov. Doklady Physics. 56, 527 (2011). Crossref
28. Yu. A. Baimova, S. V. Dmitriev, A. V. Savin, Yu. S. Kivshar. Phys. Solid State. 54 (4), 866 (2012). Crossref
29. S. Weng, H. Ning, T. Fu, N. Hu, S. Wang, K. Huang, X. Peng, H. J. Qi, C. Yan. Nano Materials Science. 1 (2), 121 (2019). Crossref
30. J. Uddin, M. I. Baskes, S. G. Srinivasan, T. R. Cundari, A. K. Wilson. Phys. Rev. B. 81 (10), 104103 (2010). Crossref
31. F. Yazdandoost, A. Y. Boroujeni, R. M. Phys. Rev. Mater. 1 (7), 076001 (2017). Crossref
32. J. Charleston, A. Agrawal, R. Mirzaeifar. Comput. Mater. Sci. 178, 109621 (2020). Crossref
33. S. Zhang, P. Huang, F. Wang. Mater. Des. 190, 108555 (2020). Crossref
34. W. D. Luedtke, U. Landman. Phys. Rev. Lett. 82 (19), 3835 (1999). Crossref
35. J. Davoodi, M. Safaralizade, M. Yarifard. Mater. Lett. 178, 205 (2016). Crossref
36. Y. Shibuta, S. Maruyama. Comput. Mater. Sci. 39 (4), 842 (2007). Crossref
37. J. H. Ryu, H. Y. Kim, D. H. Kim, D. H. Seo, H. M. Lee. J. Phys. Chem. C. 114 (5), 2022 (2010). Crossref
38. Z.-C. Lin, J.-C. Huang, Y.-R. Jeng. J. Mater. Process. Technol. 192 - 193, 27 (2007). Crossref
39. S.-K. Chien, Y.-T. Yang, C.-K. Chen. Nanoscale. 3 (10), 4307 (2011). Crossref
40. Y. Shibuta, S. Maruyama. Chem. Phys. Lett. 382, 381 (2003). Crossref
41. Y. Shibuta, J. A. Elliott. Chem. Phys. Lett. 472 (4-6), 200 (2009). Crossref
42. E. C. Neyts, A. Bogaerts. J. Phys. Chem. C. 113, 2771 (2009). Crossref
43. E. C. Neyts, A. Bogaerts. Carbon. 47 (4), 1028 (2009). Crossref
44. E. C. Neyts, Y. Shibuta, A. Bogaerts. Chem. Phys. Lett. 488 (4-6), 202 (2010). Crossref
45. S. Inoue, Y. Matsumura. Chem. Phys. Lett. 469 (1-3), 125 (2009). Crossref
46. S. Inoue, Y. Matsumura. Chem. Phys. Lett. 495, 80 (2010). Crossref
47. I. V. Lebedeva, A. A. Knizhnik, A. M. Popov, B. V. Potapkin. J. Phys. Chem. C. 116 (11), 6572 (2012). Crossref
48. R. Rezaei. Comput. Mater. Sci. 151, 181 (2018). Crossref
49. I. A. Shepelev, E. A. Korznikova, D. V. Bachurin, A. S. Semenov, A. P. Chetverikov, S. V. Dmitriev. Phys. Lett. A. 384, 126032 (2020). Crossref
50. S. Dmitriev, M. Kashchenko, J. Baimova, R. Babicheva, D. Gunderov, V. Pushin. Lett. Mater. 7 (4), 442 (2017). Crossref
51. R. I. Babicheva, J. A. Baimova, S. V. Dmitriev, V. G. Pushin.Lett. Mater. 5 (4), 359 (2015). Crossref
52. L. A. Girifalco, V. G. Weizer. Phys. Rev. 114 (3), 687 (1959). Crossref
53. L. R. Safina, J. A. Baimova, R. R. Mulyukov. Mech Adv Mater Mod Process. 5, 1 (2019). Crossref
54. K. K. Bejagam, S. Singh, S. A. Deshmukh. Carbon. 134, 43 (2018). Crossref
55. K. P. Katin, V. S. Prudkovskiy, M. M. Maslov. Micro Nano Lett. 13 (2), 160 (2018). Crossref
56. A. Y. Galashev, K. P. Katin, M. M. Maslov. Phys. Lett. A. 383 (2-3), 252 (2019). Crossref
57. J. Li, Y. Xiong, X. Wang, S. Yan, C. Yang, W. He, J. Chen, S. Wang, X. Zhang, S. Dai. Mater. Sci. Eng. A. 626, 400 (2015). Crossref
58. Z. H. Zhang, T. Topping, Y. Li, R. Vogt, Y. Z. Zhou, C. Haines, J. Paras, D. Kapoor, J. M. Schoenung, E. J. Lavernia. Scr. Mater. 65 (8), 652 (2011). Crossref
59. F. Liu, P. B. Ming, J. Li. Phys. Rev. B. 76, 064120 (2007). Crossref
60. O. Y. Kurapova, I. V. Smirnov, E. N. Solovyeva, I. Y. Archakov, V. G. Konakov. Lett. Mater. 10 (2), 164 (2020). Crossref
61. D. I. Vichuzhanin, L. A. Yolshina, R. V. Muradymov, A. V. Nesterenko. Lett. Mater. 8 (2), 184 (2018). Crossref
62. J. C. Sun, Z. C. Bai, Z. L. Huang, Z. P. Zhang. Lett. Mater. 10 (2), 200 (2020). Crossref
63. S. Yan, S. Dai, X. Zhang, C. Yang, Q. Hong, J. Chen, Z. Lin. Mater. Sci. Eng. A. 612, 440 (2014). Crossref
64. C. G. Lee, X. D. Wei, J. W. Kysar. J. Hone. Science. 321 (5887), 385 (2008). Crossref
65. O. Guler, N. Bagc. J. Mater. Res. Technol. 9 (3), 6808 (2020). Crossref
66. S. Kumar, S. K. Pattanayek, S. K. Das. J. Phys. Chem. C. 123 (29), 18017 (2019). Crossref
67. D. Lin, M. Motlag, M. Saei, S. Jin, R. M. Rahimi et al. Acta Mater. 150, 360 (2018). Crossref
68. H. Gao, X. Liu, Z. Ai, S. Zhang, L. Liu. Appl. Phys. A. 122, 981 (2016). Crossref
69. L. Li, W. N. Sun, S. B. Tian, X. X. Xia, J. J. Li, C. Z. Gu. Nanoscale. 4, 6383 (2012). Crossref
70. C. X. Zhao, Y. Zhang, S. Z. Deng, N. S. Xu, J. Chen. J. Alloys Compd. 672, 433 (2016). Crossref
71. J. J. Vilatela, D. Eder. Chem. Sus. Chem. 5, 456 (2012). Crossref
72. W. Park, C. Lee, J. M. Lee, N. Kim, G. Yi. Nanoscale. 3, 3522 (2011). Crossref
73. X. Huang, X. Y. Qi, F. Boey, H. Zhang. Chem. Soc. Rev. 41, 666 (2012). Crossref
74. L. Zhang, F. Zhang, X. Yang, G. Long, Y. Wu, T. Zhang, K. Leng, Y. Huang, Y. Ma, A. Yu, Y. Chen. Sci. Rep. 3, 1408 (2013). Crossref
75. N. V. Krainyukova. J. Low Temp. Phys. 187, 90 (2017). Crossref
76. N. V. Krainyukova, E. N. Zubarev. Phys. Rev. Lett. 116 (5), 055501 (2016). Crossref
77. Z. Zhang, A. Kutana, Y. Yang, N. V. Krainyukova, E. S. Penev, B. I. Yakobson. Carbon. 113, 26 (2017). Crossref
78. X. K. Gu, Z. Q. Pang, Y. J. Wei, R. G. Yang. Carbon. 119, 278 (2017). Crossref
79. L. R. Safina, J. A. Baimova. Micro Nano Lett. 15 (3), 176 (2019). Crossref
80. K. A. Krylova, L. R. Safina. J. Phys. Conf. Ser. 1435, 012064 (2020). Crossref
81. L. R. Safina, K. A. Krylova. J. Phys. Conf. Ser. 1435, 012067 (2020). Crossref
82. A. E. Galashev, O. R. Rakhmanova, L. A. Elshina. J. Phys. Chem. B. 12 (3), 403 (2018). Crossref
83. E. D. Kurbanova, V. A. Polukhin, A. E. Galashev. Lett. Mater. 6 (4), 271 (2016). Crossref

Similar papers

Funding

1. Russian Science Foundation - 20-72-10112
2. program of fundamental researches of Government Academy of Sciences of IMSP RAS - -